Cascaded latent thermal energy storage using a charging control method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.119166
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, X.J. & Li, X.F. & Xu, Y.H. & Zhu, D.S., 2014. "Thermal energy storage characteristics of Cu–H2O nanofluids," Energy, Elsevier, vol. 78(C), pages 212-217.
- Chiu, Justin N.W. & Martin, Viktoria, 2013. "Multistage latent heat cold thermal energy storage design analysis," Applied Energy, Elsevier, vol. 112(C), pages 1438-1445.
- Tessier, Michael J. & Floros, Michael C. & Bouzidi, Laziz & Narine, Suresh S., 2016. "Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials," Energy, Elsevier, vol. 106(C), pages 528-534.
- Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
- Seddegh, Saeid & Wang, Xiaolin & Joybari, Mahmood Mastani & Haghighat, Fariborz, 2017. "Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems," Energy, Elsevier, vol. 137(C), pages 69-82.
- Xiao, X. & Zhang, P., 2015. "Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II – Discharging process," Energy, Elsevier, vol. 80(C), pages 177-189.
- Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2018. "Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: A case study of the 19.9 MWe Gemasolar CSP plant," Applied Energy, Elsevier, vol. 228(C), pages 240-253.
- Li, Ya-Qi & He, Ya-Ling & Wang, Zhi-Feng & Xu, Chao & Wang, Weiwei, 2012. "Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 39(1), pages 447-454.
- Mehrali, Mohammad & Tahan Latibari, Sara & Mehrali, Mehdi & Mahlia, Teuku Meurah Indra & Sadeghinezhad, Emad & Metselaar, Hendrik Simon Cornelis, 2014. "Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage," Applied Energy, Elsevier, vol. 135(C), pages 339-349.
- Zauner, Christoph & Hengstberger, Florian & Etzel, Mark & Lager, Daniel & Hofmann, Rene & Walter, Heimo, 2016. "Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM," Applied Energy, Elsevier, vol. 179(C), pages 237-246.
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
- Tao, Y.B. & He, Y.L., 2011. "Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary," Applied Energy, Elsevier, vol. 88(11), pages 4172-4179.
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
- Soni, Vikram & Kumar, Arvind & Jain, V.K., 2018. "Modeling of PCM melting: Analysis of discrepancy between numerical and experimental results and energy storage performance," Energy, Elsevier, vol. 150(C), pages 190-204.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiang, Ruicheng & Qian, Gao & Li, Zhi & Yu, Xiaoli & Lu, Yiji, 2024. "Progress and challenges of latent thermal energy storage through external field-dependent heat transfer enhancement methods," Energy, Elsevier, vol. 304(C).
- Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
- Yang, Ping & Wu, Bo & Tong, Xuan & Zeng, Min & Wang, Qiuwang & Cheng, Zhilong, 2023. "Insight into heat transfer process of graphene aerogel composite phase change material," Energy, Elsevier, vol. 279(C).
- Mao, Qianjun & Zhang, Yufei, 2023. "Effect of unsteady heat source condition on thermal performance for cascaded latent heat storage packed bed," Energy, Elsevier, vol. 284(C).
- Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
- Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).
- Wang, Wei & Shuai, Yong & Qiu, Jun & He, Xibo & Hou, Yicheng, 2022. "Effect of steady-state and unstable-state inlet boundary on the thermal performance of packed-bed latent heat storage system integrated with concentrating solar collectors," Renewable Energy, Elsevier, vol. 183(C), pages 251-266.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
- Liu, Y.K. & Tao, Y.B., 2018. "Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory," Applied Energy, Elsevier, vol. 227(C), pages 488-496.
- Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
- Diao, Yanhua & Kang, Yameng & Liang, Lin & Zhao, Yaohua & Zhu, Tingting, 2017. "Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays," Energy, Elsevier, vol. 138(C), pages 929-941.
- Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
- Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
- Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
- Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
- Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
- Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
- Yang, Kun & Zhu, Neng & Li, Yongzhao & Du, Na, 2021. "Effect of parameters on the melting performance of triplex tube heat exchanger incorporating phase change material," Renewable Energy, Elsevier, vol. 174(C), pages 359-371.
- Liu, Lu & Shao, Shuangquan, 2023. "Recent advances of low-temperature cascade phase change energy storage technology: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
- Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
- Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
- Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
- Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
- Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
More about this item
Keywords
Cascaded thermal energy storage; Latent thermal energy storage; Phase change material; Thermal energy management; Charging process; Discharging process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.