IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p198-d304111.html
   My bibliography  Save this article

The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System

Author

Listed:
  • Mohammad Javad Zarei

    (Faculty of Advanced Technologies, NanoChemical Engineering Department, Shiraz University, Shiraz 71345, Iran)

  • Hassan Bazai

    (Department of Mechanical and Aeronautical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa)

  • Mohsen Sharifpur

    (Department of Mechanical and Aeronautical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa)

  • Omid Mahian

    (School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
    Department of Mechanical Engineering, Quchan University of Technology, Quchan 94771, Iran)

  • Bahman Shabani

    (Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora 3083, Australia)

Abstract

In the present study, a triplex-tube, employing fin-enhanced phase change materials (PCMs), as a thermal energy storage (TES) system was studied numerically. The main flaw of the PCMs is their low thermal conductivity that restricts their effectiveness for energy storage applications. Metallic (copper) fins are added to the geometry of the system to improve their function by extending the heat transfer area. The effects of the presence, configuration, and dimensions of copper fins were investigated to understand the best design for minimizing the solidification time and achieving the best performance enhancement for the TES system selected for this study. The results revealed that the best performance belonged to fins with a mix configuration, with an attachment angle of 90° and the length and width of 28 mm and 1 mm, respectively. Using this configuration could reduce the required time for complete solidification by around 42% compared to the system without fins. Moreover, it was concluded that increasing the length of the fin could offer its positive effect for enhancing the performance of TES system up to an optimal point only while increasing the width showed a diverse influence. Furthermore, the angles between the tube surface and the fin direction were investigated and 90° was found to be the best choice for the TES case selected in this study. In addition, placement of the fins on the surface of internal or external tube or mix method did not show a significant effect while placing the fins on the external surface of the tube showed even a negative impact on the performance of the TES system compared with when no fins were applied.

Suggested Citation

  • Mohammad Javad Zarei & Hassan Bazai & Mohsen Sharifpur & Omid Mahian & Bahman Shabani, 2020. "The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System," Energies, MDPI, vol. 13(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:198-:d:304111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    2. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    3. René Hofmann & Sabrina Dusek & Stephan Gruber & Gerwin Drexler-Schmid, 2019. "Design Optimization of a Hybrid Steam-PCM Thermal Energy Storage for Industrial Applications," Energies, MDPI, vol. 12(5), pages 1-25, March.
    4. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2008. "Heat transfer characteristics of thermal energy storage system using PCM capsules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2438-2458, December.
    5. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    6. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    7. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    8. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
    9. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
    10. Antonio Real-Fernández & Joaquín Navarro-Esbrí & Adrián Mota-Babiloni & Ángel Barragán-Cervera & Luis Domenech & Fernando Sánchez & Angelo Maiorino & Ciro Aprea, 2019. "Modeling of a PCM TES Tank Used as an Alternative Heat Sink for a Water Chiller. Analysis of Performance and Energy Savings," Energies, MDPI, vol. 12(19), pages 1-18, September.
    11. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    12. Sciacovelli, A. & Gagliardi, F. & Verda, V., 2015. "Maximization of performance of a PCM latent heat storage system with innovative fins," Applied Energy, Elsevier, vol. 137(C), pages 707-715.
    13. Xue Chen & Xiaolei Li & Xinlin Xia & Chuang Sun & Rongqiang Liu, 2019. "Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement," Energies, MDPI, vol. 12(17), pages 1-18, August.
    14. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    15. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
    16. Nematollahi, Omid & Hoghooghi, Hadi & Rasti, Mehdi & Sedaghat, Ahmad, 2016. "Energy demands and renewable energy resources in the Middle East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1172-1181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    2. Ding, Yang & Wang, Hang & Huang, Bohou & Hu, Yige & Jiang, Feng & Ling, Xiang, 2022. "Thermal performance analysis of a 20-feet latent cold energy storage device integrated with a novel fin-plate unit for building cooling," Renewable Energy, Elsevier, vol. 200(C), pages 405-418.
    3. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    4. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
    5. Peter Sivák & Peter Tauš & Radim Rybár & Martin Beer & Zuzana Šimková & František Baník & Sergey Zhironkin & Jana Čitbajová, 2020. "Analysis of the Combined Ice Storage (PCM) Heating System Installation with Special Kind of Solar Absorber in an Older House," Energies, MDPI, vol. 13(15), pages 1-20, July.
    6. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Qicheng Chen & Junting Wu & Kanglong Sun & Yingjin Zhang, 2022. "Numerical Study of Heat Transfer Enhancement by Arc-Shaped Fins in a Shell-Tube Thermal Energy Storage Unit," Energies, MDPI, vol. 15(20), pages 1-23, October.
    8. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    2. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Qu, Xiaohang & Jiang, Shan & Qi, Xiaoni, 2022. "Experimental investigation on performance improvement of latent heat storage capsule by oscillating movement," Applied Energy, Elsevier, vol. 316(C).
    4. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    5. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    6. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    7. Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
    8. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
    9. Cao, Xiaoling & Zhang, Nan & Yuan, Yanping & Luo, Xiaolong, 2020. "Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery," Renewable Energy, Elsevier, vol. 157(C), pages 616-625.
    10. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    11. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    12. Pizzolato, Alberto & Sharma, Ashesh & Maute, Kurt & Sciacovelli, Adriano & Verda, Vittorio, 2017. "Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization," Applied Energy, Elsevier, vol. 208(C), pages 210-227.
    13. Wang, Haoran & Ran, Xiaofeng & Zhong, Yajuan & Lu, Linyuan & Lin, Jun & He, Gang & Wang, Liang & Dai, Zhimin, 2022. "Ternary chloride salt–porous ceramic composite as a high-temperature phase change material," Energy, Elsevier, vol. 238(PB).
    14. Mohammad Ghalambaz & Hayder I. Mohammed & Jasim M. Mahdi & Amir Hossein Eisapour & Obai Younis & Aritra Ghosh & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System," Energies, MDPI, vol. 14(6), pages 1-19, March.
    15. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    16. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    17. Fang, Y. & Qu, Z.G. & Zhang, J.F. & Xu, H.T. & Qi, G.L., 2020. "Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material," Applied Energy, Elsevier, vol. 275(C).
    18. Mekrisuh, Kedumese u & Singh, Dushyant & Udayraj,, 2020. "Performance analysis of a vertically oriented concentric-tube PCM based thermal energy storage system: Parametric study and correlation development," Renewable Energy, Elsevier, vol. 149(C), pages 902-916.
    19. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    20. Wei, Gaosheng & Wang, Gang & Xu, Chao & Ju, Xing & Xing, Lijing & Du, Xiaoze & Yang, Yongping, 2018. "Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1771-1786.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:198-:d:304111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.