Heat Transfer Augmentation Using Duplex and Triplex Tube Phase Change Material (PCM) Heat Exchanger Configurations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lamrani, Bilal & Kuznik, Frédéric & Draoui, Abdeslam, 2020. "Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings," Renewable Energy, Elsevier, vol. 162(C), pages 411-426.
- Rezaei, Ehsan & Barbato, Maurizio & Ortona, Alberto & Haussener, Sophia, 2020. "Design and optimization of a high-temperature latent heat storage unit," Applied Energy, Elsevier, vol. 261(C).
- Saidur, R., 2009. "Energy consumption, energy savings, and emission analysis in Malaysian office buildings," Energy Policy, Elsevier, vol. 37(10), pages 4104-4113, October.
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
- Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
- Merlin, Kevin & Delaunay, Didier & Soto, Jérôme & Traonvouez, Luc, 2016. "Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM," Applied Energy, Elsevier, vol. 166(C), pages 107-116.
- Kalapala, Lokesh & Devanuri, Jaya Krishna, 2020. "Energy and exergy analyses of latent heat storage unit positioned at different orientations – An experimental study," Energy, Elsevier, vol. 194(C).
- Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
- Tay, N.H.S. & Belusko, M. & Castell, A. & Cabeza, L.F. & Bruno, F., 2014. "An effectiveness-NTU technique for characterising a finned tubes PCM system using a CFD model," Applied Energy, Elsevier, vol. 131(C), pages 377-385.
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tao Ning & Xinyu Huang & Junwei Su & Xiaohu Yang, 2023. "Design and Research of Heat Storage Enhancement by Innovative Wave Fin in a Hot Water–Oil-Displacement System," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
- Diao, Yanhua & Kang, Yameng & Liang, Lin & Zhao, Yaohua & Zhu, Tingting, 2017. "Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays," Energy, Elsevier, vol. 138(C), pages 929-941.
- Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
- Cao, Xiaoling & Zhang, Nan & Yuan, Yanping & Luo, Xiaolong, 2020. "Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery," Renewable Energy, Elsevier, vol. 157(C), pages 616-625.
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Mohammad Ghalambaz & Hayder I. Mohammed & Jasim M. Mahdi & Amir Hossein Eisapour & Obai Younis & Aritra Ghosh & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System," Energies, MDPI, vol. 14(6), pages 1-19, March.
- Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.
- Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
- Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
- Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
- Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
- Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
- Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
- Nie, Binjian & Zou, Boyang & She, Xiaohui & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2020. "Development of a heat transfer coefficient based design method of a thermal energy storage device for transport air-conditioning applications," Energy, Elsevier, vol. 196(C).
- Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Choi, Sung Ho & Sohn, Dong Kee & Ko, Han Seo, 2021. "Performance enhancement of latent heat thermal energy storage by bubble-driven flow," Applied Energy, Elsevier, vol. 302(C).
- Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
- Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
More about this item
Keywords
latent thermal storage; duplex tube heat exchanger (DTHX); triplex tube heat exchanger (TTHX); phase change material (PCM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4037-:d:1144844. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.