IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v137y2015icp707-715.html
   My bibliography  Save this item

Maximization of performance of a PCM latent heat storage system with innovative fins

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
  2. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
  3. Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
  4. Lv, Laiquan & Zou, Yang & Huang, Shengyao & Wang, Xinyi & Shao, Rongyu & Xue, Xue & Rong, Yan & Zhou, Hao, 2023. "Experimental study on a pilot-scale medium-temperature latent heat storage system with various fins," Renewable Energy, Elsevier, vol. 205(C), pages 499-508.
  5. Duan, Juan, 2021. "The PCM-porous system used to cool the inclined PV panel," Renewable Energy, Elsevier, vol. 180(C), pages 1315-1332.
  6. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
  7. Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
  8. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
  9. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
  10. Janusz T. Cieśliński & Maciej Fabrykiewicz, 2023. "Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
  11. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
  12. Xu, Yang & He, Chen & Chen, Yang & Sun, Yu & Yin, Hang & Zheng, Zhang-Jing, 2023. "Experimental and numerical study on the effect of the intelligent memory metal fin on the melting and solidification process of PCM," Renewable Energy, Elsevier, vol. 218(C).
  13. Georg Scharinger-Urschitz & Heimo Walter & Markus Haider, 2019. "Heat Transfer in Latent High-Temperature Thermal Energy Storage Systems—Experimental Investigation," Energies, MDPI, vol. 12(7), pages 1-19, April.
  14. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
  15. Kazemi, M. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2018. "Improvement of longitudinal fins configuration in latent heat storage systems," Renewable Energy, Elsevier, vol. 116(PA), pages 447-457.
  16. Liu, Liu & Zhang, Xiyao & Liang, Haobin & Niu, Jianlei & Wu, Jian-Yong, 2022. "Cooling storage performance of a novel phase change material nano-emulsion for room air-conditioning in a self-designed pilot thermal storage unit," Applied Energy, Elsevier, vol. 308(C).
  17. Liu, Zhan & Liu, Zihui & Liu, Gang & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the effect of nonuniform Y-shaped fin upon solid–liquid phase change in a thermal storage tank," Applied Energy, Elsevier, vol. 321(C).
  18. Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
  19. Mohammad Ghalambaz & S. A. M. Mehryan & Ahmad Hajjar & Mehdi A. Fteiti & Obai Younis & Pouyan Talebizadeh Sardari & Wahiba Yaïci, 2021. "Latent Heat Thermal Storage in Non-Uniform Metal Foam Filled with Nano-Enhanced Phase Change Material," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
  20. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
  21. Frazzica, Andrea & Manzan, Marco & Sapienza, Alessio & Freni, Angelo & Toniato, Giuseppe & Restuccia, Giovanni, 2016. "Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications," Applied Energy, Elsevier, vol. 183(C), pages 1157-1167.
  22. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
  23. Huang, Yongping & Yao, Feng & Liu, Xiangdong, 2021. "Numerical study on the thermal enhancement of horizontal latent heat storage units with hierarchical fins," Renewable Energy, Elsevier, vol. 180(C), pages 383-397.
  24. Xu, Huaqian & Zuo, Hongyang & Zeng, Kuo & Lu, Yongwen & Kong, Jiayue & Chi, Bowen & Gao, Junjie & Yang, Haiping & Chen, Hanping, 2023. "The heat transfer enhancement of the converging-diverging tube in the latent heat thermal energy storage unit: Melting performance and evaluation," Energy, Elsevier, vol. 282(C).
  25. Saedpanah, Ehsan & Lahonian, Mansour & Malek Abad, Mahdi Zare, 2023. "Optimization of multi-source renewable energy air conditioning systems using a combination of transient simulation, response surface method, and 3E lifespan analysis," Energy, Elsevier, vol. 272(C).
  26. Zheng, Zhang-Jing & Xu, Yang & Li, Ming-Jia, 2018. "Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance," Applied Energy, Elsevier, vol. 220(C), pages 447-454.
  27. Jannesari, Hamid & Abdollahi, Naeim, 2017. "Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems," Applied Energy, Elsevier, vol. 189(C), pages 369-384.
  28. Tang, Song-Zhen & He, Yan & He, Ya-Ling & Wang, Fei-Long, 2020. "Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas," Applied Energy, Elsevier, vol. 266(C).
  29. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
  30. Anish., R & Joybari, Mahmood Mastani & Seddegh, Saeid & Mariappan, V. & Haghighat, Fariborz & Yuan, Yanping, 2021. "Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation," Renewable Energy, Elsevier, vol. 163(C), pages 423-436.
  31. Huang, Yongping & Deng, Zilong & Chen, Yongping & Zhang, Chengbin, 2023. "Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers," Applied Energy, Elsevier, vol. 335(C).
  32. Pizzolato, Alberto & Sharma, Ashesh & Maute, Kurt & Sciacovelli, Adriano & Verda, Vittorio, 2017. "Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization," Applied Energy, Elsevier, vol. 208(C), pages 210-227.
  33. Zishuo Guo & Li Xu & Feihu Sun & Si Sun, 2024. "Experimental Investigation on Heat Transfer Enhancement of Phase Change Materials by Fractal Fins," Energies, MDPI, vol. 17(11), pages 1-21, May.
  34. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
  35. Zheng, Zhang-Jing & Cai, Xiao & Yang, Chao & Xu, Yang, 2022. "Improving the solidification performance of a latent heat thermal energy storage unit using arrow-shaped fins obtained by an innovative fast optimization algorithm," Renewable Energy, Elsevier, vol. 195(C), pages 566-577.
  36. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
  37. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
  38. Andrea Frazzica & Valeria Palomba & Angelo Freni, 2023. "Development and Experimental Characterization of an Innovative Tank-in-Tank Hybrid Sensible–Latent Thermal Energy Storage System," Energies, MDPI, vol. 16(4), pages 1-18, February.
  39. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  40. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
  41. Yan, Peiliang & Fan, Weijun & Yang, Yan & Ding, Hongbing & Arshad, Adeel & Wen, Chuang, 2022. "Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations," Applied Energy, Elsevier, vol. 327(C).
  42. Tao, Y.B. & Lin, C.H. & He, Y.L., 2015. "Effect of surface active agent on thermal properties of carbonate salt/carbon nanomaterial composite phase change material," Applied Energy, Elsevier, vol. 156(C), pages 478-489.
  43. Wu, Wei & Bai, Yu & Huang, Hongyu & Ding, Zhixiong & Deng, Lisheng, 2019. "Charging and discharging characteristics of absorption thermal energy storage using ionic-liquid-based working fluids," Energy, Elsevier, vol. 189(C).
  44. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
  45. Qu, Xiaohang & Jiang, Shan & Qi, Xiaoni, 2022. "Experimental investigation on performance improvement of latent heat storage capsule by oscillating movement," Applied Energy, Elsevier, vol. 316(C).
  46. Ait Laasri, Imad & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Energy performance assessment of a novel enhanced solar thermal system with topology optimized latent heat thermal energy storage unit for domestic water heating," Renewable Energy, Elsevier, vol. 224(C).
  47. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
  48. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
  49. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
  50. Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2016. "Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit," Renewable Energy, Elsevier, vol. 89(C), pages 371-379.
  51. Duan, Juan & Peng, Zeyu, 2022. "Numerical investigation of nano-enhanced phase change material melting in the 3D annular tube with spiral fins," Renewable Energy, Elsevier, vol. 193(C), pages 251-263.
  52. Palmer, Ben & Arshad, Adeel & Yang, Yan & Wen, Chuang, 2023. "Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations," Applied Energy, Elsevier, vol. 333(C).
  53. R. Andrzejczyk & P. Kozak & T. Muszyński, 2020. "Experimental Investigations on the Influence of Coil Arrangement on Melting/Solidification Processes," Energies, MDPI, vol. 13(23), pages 1-19, December.
  54. Scharinger-Urschitz, Georg & Schwarzmayr, Paul & Walter, Heimo & Haider, Markus, 2020. "Partial cycle operation of latent heat storage with finned tubes," Applied Energy, Elsevier, vol. 280(C).
  55. Wang, Haoran & Ran, Xiaofeng & Zhong, Yajuan & Lu, Linyuan & Lin, Jun & He, Gang & Wang, Liang & Dai, Zhimin, 2022. "Ternary chloride salt–porous ceramic composite as a high-temperature phase change material," Energy, Elsevier, vol. 238(PB).
  56. Hong, Yuxiang & Cheng, Zihao & Li, Qing & Du, Juan, 2024. "Energy storage, thermal-hydraulic, and thermodynamic characteristics of a latent thermal energy storage system with 180-degree bifurcated fractal fins," Energy, Elsevier, vol. 297(C).
  57. Muhammad Saqib & Rafal Andrzejczyk, 2023. "A review of phase change materials and heat enhancement methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
  58. Mekrisuh, Kedumese u & Singh, Dushyant & Udayraj,, 2020. "Performance analysis of a vertically oriented concentric-tube PCM based thermal energy storage system: Parametric study and correlation development," Renewable Energy, Elsevier, vol. 149(C), pages 902-916.
  59. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
  60. Zhang, Tao & Huo, Dongxin & Wang, Chengyao & Shi, Zhengrong, 2023. "Review of the modeling approaches of phase change processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  61. Mohammad Javad Zarei & Hassan Bazai & Mohsen Sharifpur & Omid Mahian & Bahman Shabani, 2020. "The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System," Energies, MDPI, vol. 13(1), pages 1-20, January.
  62. Wei, Gaosheng & Wang, Gang & Xu, Chao & Ju, Xing & Xing, Lijing & Du, Xiaoze & Yang, Yongping, 2018. "Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1771-1786.
  63. Huang, Xinyu & Yao, Shouguang & Yang, Xiaohu & Zhou, Rui, 2022. "Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection," Renewable Energy, Elsevier, vol. 188(C), pages 890-910.
  64. Lu, Shilei & Lin, Quanyi & Liu, Yi & Yue, Lu & Wang, Ran, 2022. "Study on thermal performance improvement technology of latent heat thermal energy storage for building heating," Applied Energy, Elsevier, vol. 323(C).
  65. Tian, Heqing & Du, Lichan & Wei, Xiaolan & Deng, Suyan & Wang, Weilong & Ding, Jing, 2017. "Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 525-530.
  66. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  67. Qicheng Chen & Junting Wu & Kanglong Sun & Yingjin Zhang, 2022. "Numerical Study of Heat Transfer Enhancement by Arc-Shaped Fins in a Shell-Tube Thermal Energy Storage Unit," Energies, MDPI, vol. 15(20), pages 1-23, October.
  68. Xu, Huaqian & Zuo, Hongyang & Zeng, Kuo & Lu, Yongwen & Chi, Bowen & Flamant, Gilles & Yang, Haiping & Chen, Hanping, 2024. "Investigation of the modified Gaussian-based non-phase field method for numerical simulation of latent heat storage," Energy, Elsevier, vol. 288(C).
  69. Zhu, Rongsheng & Jing, Dalei, 2024. "Numerical study on the discharging performance of a latent heat thermal energy storage system with fractal tree-shaped convergent fins," Renewable Energy, Elsevier, vol. 221(C).
  70. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  71. Mohammad Ghalambaz & Hayder I. Mohammed & Jasim M. Mahdi & Amir Hossein Eisapour & Obai Younis & Aritra Ghosh & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System," Energies, MDPI, vol. 14(6), pages 1-19, March.
  72. Pizzolato, Alberto & Sharma, Ashesh & Ge, Ruihuan & Maute, Kurt & Verda, Vittorio & Sciacovelli, Adriano, 2020. "Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements," Energy, Elsevier, vol. 203(C).
  73. Spengler, Fernando Claudio & Oliveski, Rejane De Césaro & Eberhardt, Gabriel Eduardo Strohm, 2022. "Effect of proportions of fins with radial branches on the lauric acid melting process in an annular cavity," Energy, Elsevier, vol. 255(C).
  74. Solé, Aran & Falcoz, Quentin & Cabeza, Luisa F. & Neveu, Pierre, 2018. "Geometry optimization of a heat storage system for concentrated solar power plants (CSP)," Renewable Energy, Elsevier, vol. 123(C), pages 227-235.
  75. Yao, Shouguang & Huang, Xinyu, 2021. "Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system," Energy, Elsevier, vol. 227(C).
  76. Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.