IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222014608.html
   My bibliography  Save this article

Effect of proportions of fins with radial branches on the lauric acid melting process in an annular cavity

Author

Listed:
  • Spengler, Fernando Claudio
  • Oliveski, Rejane De Césaro
  • Eberhardt, Gabriel Eduardo Strohm

Abstract

Energy storage systems with phase change materials (PCM) are characterized by high energy density, with a low thermal and volumetric variation. However, the usual low thermal conductivity increases energy charging and discharging times. An established solution to enhance heat exchange is the use of fins. The objective of the present work is to analyze the effect of innovative fin geometry on the melting process of Lauric acid PCM in an annular cavity. In the case studies, the fins cross-sectional areas were considered constant, then varying the proportions and positioning of the fin branches for two different area fractions between the fin and cavity. The numerical model, validated with experimental data from reference works, consisted of the continuity, momentum, and energy conservation equations complemented by an enthalpy-porosity phase change model. The results showed that the melting rate effectiveness reached average values up to 146% compared to a finless system. The increase in branches intensified the natural convection while its positioning was decisive for total melting time reduction. Positioning the branches close to the heated inner core or outer cavity wall reduced the melting rate due to the fluid circulation inhibition.

Suggested Citation

  • Spengler, Fernando Claudio & Oliveski, Rejane De Césaro & Eberhardt, Gabriel Eduardo Strohm, 2022. "Effect of proportions of fins with radial branches on the lauric acid melting process in an annular cavity," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014608
    DOI: 10.1016/j.energy.2022.124557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anish., R & Joybari, Mahmood Mastani & Seddegh, Saeid & Mariappan, V. & Haghighat, Fariborz & Yuan, Yanping, 2021. "Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation," Renewable Energy, Elsevier, vol. 163(C), pages 423-436.
    2. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2015. "Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 729-736.
    3. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
    4. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    5. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    6. Sciacovelli, A. & Gagliardi, F. & Verda, V., 2015. "Maximization of performance of a PCM latent heat storage system with innovative fins," Applied Energy, Elsevier, vol. 137(C), pages 707-715.
    7. Hashem Zadeh, Seyed Mohsen & Mehryan, S.A.M. & Ghalambaz, Mohammad & Ghodrat, Maryam & Young, John & Chamkha, Ali, 2020. "Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    3. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    5. Huang, Yongping & Yao, Feng & Liu, Xiangdong, 2021. "Numerical study on the thermal enhancement of horizontal latent heat storage units with hierarchical fins," Renewable Energy, Elsevier, vol. 180(C), pages 383-397.
    6. Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2018. "Experimental validation of an air-PCM storage unit comparing the effective heat capacity and enthalpy methods through CFD simulations," Energy, Elsevier, vol. 155(C), pages 495-503.
    7. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    8. Yanjun Zhang & Shuli Liu & Liu Yang & Xiue Yang & Yongliang Shen & Xiaojing Han, 2020. "Experimental Study on the Strengthen Heat Transfer Performance of PCM by Active Stirring," Energies, MDPI, vol. 13(9), pages 1-16, May.
    9. Lv, Laiquan & Zou, Yang & Huang, Shengyao & Wang, Xinyi & Shao, Rongyu & Xue, Xue & Rong, Yan & Zhou, Hao, 2023. "Experimental study on a pilot-scale medium-temperature latent heat storage system with various fins," Renewable Energy, Elsevier, vol. 205(C), pages 499-508.
    10. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    11. Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
    12. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Li, Yuanji & Yang, Xiaohu & He, Ya-Ling, 2023. "Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism," Energy, Elsevier, vol. 280(C).
    13. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    14. Wu, Wei & Bai, Yu & Huang, Hongyu & Ding, Zhixiong & Deng, Lisheng, 2019. "Charging and discharging characteristics of absorption thermal energy storage using ionic-liquid-based working fluids," Energy, Elsevier, vol. 189(C).
    15. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    16. Liu, Zhan & Liu, Zihui & Liu, Gang & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the effect of nonuniform Y-shaped fin upon solid–liquid phase change in a thermal storage tank," Applied Energy, Elsevier, vol. 321(C).
    17. Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
    18. Xu, Huaqian & Zuo, Hongyang & Zeng, Kuo & Lu, Yongwen & Kong, Jiayue & Chi, Bowen & Gao, Junjie & Yang, Haiping & Chen, Hanping, 2023. "The heat transfer enhancement of the converging-diverging tube in the latent heat thermal energy storage unit: Melting performance and evaluation," Energy, Elsevier, vol. 282(C).
    19. Scharinger-Urschitz, Georg & Schwarzmayr, Paul & Walter, Heimo & Haider, Markus, 2020. "Partial cycle operation of latent heat storage with finned tubes," Applied Energy, Elsevier, vol. 280(C).
    20. Wang, Haoran & Ran, Xiaofeng & Zhong, Yajuan & Lu, Linyuan & Lin, Jun & He, Gang & Wang, Liang & Dai, Zhimin, 2022. "Ternary chloride salt–porous ceramic composite as a high-temperature phase change material," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.