Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120527
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
- Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
- Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
- Tay, N.H.S. & Bruno, F. & Belusko, M., 2013. "Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD," Applied Energy, Elsevier, vol. 104(C), pages 79-86.
- Hosseinzadeh, Kh. & Moghaddam, M.A. Erfani & Asadi, A. & Mogharrebi, A.R. & Ganji, D.D., 2020. "Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation," Renewable Energy, Elsevier, vol. 154(C), pages 497-507.
- López-Navarro, A. & Biosca-Taronger, J. & Corberán, J.M. & Peñalosa, C. & Lázaro, A. & Dolado, P. & Payá, J., 2014. "Performance characterization of a PCM storage tank," Applied Energy, Elsevier, vol. 119(C), pages 151-162.
- Shon, Jungwook & Kim, Hyungik & Lee, Kihyung, 2014. "Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger," Applied Energy, Elsevier, vol. 113(C), pages 680-689.
- Liu, Lingkun & Su, Di & Tang, Yaojie & Fang, Guiyin, 2016. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 305-317.
- Zauner, Christoph & Hengstberger, Florian & Etzel, Mark & Lager, Daniel & Hofmann, Rene & Walter, Heimo, 2016. "Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM," Applied Energy, Elsevier, vol. 179(C), pages 237-246.
- Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
- Sciacovelli, A. & Gagliardi, F. & Verda, V., 2015. "Maximization of performance of a PCM latent heat storage system with innovative fins," Applied Energy, Elsevier, vol. 137(C), pages 707-715.
- Li, Ming-Jia & Jin, Bo & Ma, Zhao & Yuan, Fan, 2018. "Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material," Applied Energy, Elsevier, vol. 221(C), pages 1-15.
- Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
- Tao, Y.B. & Lin, C.H. & He, Y.L., 2015. "Effect of surface active agent on thermal properties of carbonate salt/carbon nanomaterial composite phase change material," Applied Energy, Elsevier, vol. 156(C), pages 478-489.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Huang, Xinyu & Li, Fangfei & Xiao, Tian & Li, Yuanji & Yang, Xiaohu & He, Ya-Ling, 2023. "Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism," Energy, Elsevier, vol. 280(C).
- Mao, Qianjun & Zhu, Yuanyuan & Li, Tao, 2023. "Study on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 263(PA).
- Yan, Peiliang & Fan, Weijun & Yang, Yan & Ding, Hongbing & Arshad, Adeel & Wen, Chuang, 2022. "Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations," Applied Energy, Elsevier, vol. 327(C).
- Liang, Yan & Yang, Haibin & Wang, Huilong & Bao, Xiaohua & Cui, Hongzhi, 2024. "Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study," Energy, Elsevier, vol. 286(C).
- Lv, Laiquan & Huang, Shengyao & Zou, Yang & Wang, Xinyi & Zhou, Hao, 2024. "Thermal performance investigation of a medium-temperature pilot-scale latent heat thermal energy storage system: The constant and step temperatures charging and discharging," Renewable Energy, Elsevier, vol. 225(C).
- Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
- Lu, Shilei & Zhai, Xue & Gao, Jingxian & Wang, Ran, 2022. "Performance optimization and experimental analysis of a novel low-temperature latent heat thermal energy storage device," Energy, Elsevier, vol. 239(PE).
- Duan, Juan & Peng, Zeyu, 2022. "Numerical investigation of nano-enhanced phase change material melting in the 3D annular tube with spiral fins," Renewable Energy, Elsevier, vol. 193(C), pages 251-263.
- Nishant Modi & Xiaolin Wang & Michael Negnevitsky, 2023. "Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges," Energies, MDPI, vol. 16(4), pages 1-20, February.
- Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
- Li, Tao & Zhu, Yuanyuan & Hu, Xinlei & Mao, Qianjun, 2023. "Numerical investigation of the influence of unsteady inlet temperature on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 280(C).
- Modi, Nishant & Wang, Xiaolin & Negnevitsky, Michael, 2023. "Experimental investigation of the effects of inclination, fin height, and perforation on the thermal performance of a longitudinal finned latent heat thermal energy storage," Energy, Elsevier, vol. 274(C).
- Huang, Xinyu & Yao, Shouguang & Yang, Xiaohu & Zhou, Rui, 2022. "Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection," Renewable Energy, Elsevier, vol. 188(C), pages 890-910.
- Jiang, Jiajie & Hong, Yuxiang & Li, Qing & Du, Juan, 2023. "Evaluating the impacts of fin structures and fin counts on photovoltaic panels integrated with phase change material," Energy, Elsevier, vol. 283(C).
- Junting Wu & Yingjin Zhang & Kanglong Sun & Qicheng Chen, 2022. "Heat Transfer Enhancement of Phase Change Material in Triple-Tube Latent Heat Thermal Energy Storage Units: Operating Modes and Fin Configurations," Energies, MDPI, vol. 15(15), pages 1-26, August.
- Huang, Xinyu & Li, Fangfei & Li, Yuanji & Meng, Xiangzhao & Yang, Xiaohu & Sundén, Bengt, 2023. "Optimization of melting performance of a heat storage tank under rotation conditions: Based on taguchi design and response surface method," Energy, Elsevier, vol. 271(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
- Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
- Zhao, B.C. & Wang, R.Z., 2020. "A novel 3-D model of an industrial-scale tube-fin latent heat storage using salt hydrates with supercooling: A model validation," Energy, Elsevier, vol. 213(C).
- Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
- Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
- Liu, Zhan & Liu, Zihui & Liu, Gang & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the effect of nonuniform Y-shaped fin upon solid–liquid phase change in a thermal storage tank," Applied Energy, Elsevier, vol. 321(C).
- Scharinger-Urschitz, Georg & Schwarzmayr, Paul & Walter, Heimo & Haider, Markus, 2020. "Partial cycle operation of latent heat storage with finned tubes," Applied Energy, Elsevier, vol. 280(C).
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
- Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
- Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
- Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
- Huang, Yongping & Yao, Feng & Liu, Xiangdong, 2021. "Numerical study on the thermal enhancement of horizontal latent heat storage units with hierarchical fins," Renewable Energy, Elsevier, vol. 180(C), pages 383-397.
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Mohammad Ghalambaz & Hayder I. Mohammed & Jasim M. Mahdi & Amir Hossein Eisapour & Obai Younis & Aritra Ghosh & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System," Energies, MDPI, vol. 14(6), pages 1-19, March.
- Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
- Huang, Xinyu & Yao, Shouguang & Yang, Xiaohu & Zhou, Rui, 2022. "Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection," Renewable Energy, Elsevier, vol. 188(C), pages 890-910.
- Liu, Liu & Zhang, Xiyao & Liang, Haobin & Niu, Jianlei & Wu, Jian-Yong, 2022. "Cooling storage performance of a novel phase change material nano-emulsion for room air-conditioning in a self-designed pilot thermal storage unit," Applied Energy, Elsevier, vol. 308(C).
- Lv, Laiquan & Huang, Shengyao & Zou, Yang & Wang, Xinyi & Zhou, Hao, 2024. "Thermal performance investigation of a medium-temperature pilot-scale latent heat thermal energy storage system: The constant and step temperatures charging and discharging," Renewable Energy, Elsevier, vol. 225(C).
More about this item
Keywords
Triplex-tube thermal energy storage; Phase change materials; Triangular fins; Solid fraction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007763. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.