IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v113y2014icp1645-1655.html
   My bibliography  Save this item

Real-world fuel consumption and CO2 emissions of urban public buses in Beijing

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lin, Boqiang & Tan, Ruipeng, 2017. "Are people willing to pay more for new energy bus fares?," Energy, Elsevier, vol. 130(C), pages 365-372.
  2. Ribau, João P. & Sousa, João M.C. & Silva, Carla M., 2015. "Reducing the carbon footprint of urban bus fleets using multi-objective optimization," Energy, Elsevier, vol. 93(P1), pages 1089-1104.
  3. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
  4. Zakariya M. Dalala & Mohammad Alnawafa & Osama Saadeh & Emad Alnawafa, 2020. "Reducing Commuter CO 2 Footprint through Transit PV Electrification," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
  5. Roozbeh Jalali & Seama Koohi-Fayegh & Khalil El-Khatib & Daniel Hoornweg & Heng Li, 2017. "Investigating the Potential of Ridesharing to Reduce Vehicle Emissions," Urban Planning, Cogitatio Press, vol. 2(2), pages 26-40.
  6. Wang, Zhaohua & Liu, Wei, 2015. "Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives," Applied Energy, Elsevier, vol. 158(C), pages 292-299.
  7. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
  8. Sun, Lu & Liu, Wenjing & Li, Zhaoling & Cai, Bofeng & Fujii, Minoru & Luo, Xiao & Chen, Wei & Geng, Yong & Fujita, Tsuyoshi & Le, Yiping, 2021. "Spatial and structural characteristics of CO2 emissions in East Asian megacities and its indication for low-carbon city development," Applied Energy, Elsevier, vol. 284(C).
  9. Hassanean S. H. Jassim & Weizhuo Lu & Thomas Olofsson, 2017. "Predicting Energy Consumption and CO 2 Emissions of Excavators in Earthwork Operations: An Artificial Neural Network Model," Sustainability, MDPI, vol. 9(7), pages 1-25, July.
  10. Soylu, Seref, 2015. "Development of PN emission factors for the real world urban driving conditions of a hybrid city bus," Applied Energy, Elsevier, vol. 138(C), pages 488-495.
  11. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
  12. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
  13. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
  14. Ling-yun He & Li Liu, 2016. "The demand for road transport in China: imposing theoretical regularity and flexible functional forms selection," Papers 1612.02656, arXiv.org.
  15. Danilo Arcentales & Carla Silva, 2019. "Exploring the Introduction of Plug-In Hybrid Flex-Fuel Vehicles in Ecuador," Energies, MDPI, vol. 12(12), pages 1-14, June.
  16. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
  17. Ma, Jie & Xu, Mengmeng & Jiang, Jiehui, 2023. "Mapping high-resolution urban road carbon and pollutant emissions using travel demand data," Energy, Elsevier, vol. 263(PE).
  18. Amine Masmoudi, M. & Coelho, Leandro C. & Demir, Emrah, 2022. "Plug-in hybrid electric refuse vehicle routing problem for waste collection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
  19. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
  20. Oscar S. Serrano-Guevara & José I. Huertas & Luis F. Quirama & Antonio E. Mogro, 2022. "Energy Efficiency of Heavy-Duty Vehicles in Mexico," Energies, MDPI, vol. 16(1), pages 1-25, December.
  21. Bigazzi, Alexander, 2019. "Comparison of marginal and average emission factors for passenger transportation modes," Applied Energy, Elsevier, vol. 242(C), pages 1460-1466.
  22. Yue, Xin & Wu, Ye & Hao, Jiming & Pang, Yuan & Ma, Yao & Li, Yi & Li, Boshi & Bao, Xiaofeng, 2015. "Fuel quality management versus vehicle emission control in China, status quo and future perspectives," Energy Policy, Elsevier, vol. 79(C), pages 87-98.
  23. Wen, Yifan & Wu, Ruoxi & Zhou, Zihang & Zhang, Shaojun & Yang, Shengge & Wallington, Timothy J. & Shen, Wei & Tan, Qinwen & Deng, Ye & Wu, Ye, 2022. "A data-driven method of traffic emissions mapping with land use random forest models," Applied Energy, Elsevier, vol. 305(C).
  24. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
  25. Liyan Feng & Jun Zhai & Lei Chen & Wuqiang Long & Jiangping Tian & Bin Tang, 2017. "Increasing the application of gas engines to decrease China’s GHG emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 839-861, August.
  26. Sina, Naser & Nasiri, Sayyad & Karkhaneh, Vahid, 2015. "Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions," Applied Energy, Elsevier, vol. 157(C), pages 974-983.
  27. Aderiana Mutheu Mbandi & Jan R. Böhnke & Dietrich Schwela & Harry Vallack & Mike R. Ashmore & Lisa Emberson, 2019. "Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya," Energies, MDPI, vol. 12(6), pages 1-28, March.
  28. Bo Hong & Hongqiao Qin & Runsheng Jiang & Min Xu & Jiaqi Niu, 2018. "How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium," IJERPH, MDPI, vol. 15(12), pages 1-21, December.
  29. Sheng Yang & Ling-Yun He, 2015. "Oil price shocks, road transport pollution emissions and residents' health losses in China," Papers 1512.01742, arXiv.org.
  30. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
  31. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
  32. Basso, Franco & Feijoo, Felipe & Pezoa, Raúl & Varas, Mauricio & Vidal, Brian, 2024. "The impact of electromobility in public transport: An estimation of energy consumption using disaggregated data in Santiago, Chile," Energy, Elsevier, vol. 286(C).
  33. Akbar Ali & Nasir Ayub & Muhammad Shiraz & Niamat Ullah & Abdullah Gani & Muhammad Ahsan Qureshi, 2021. "Traffic Efficiency Models for Urban Traffic Management Using Mobile Crowd Sensing: A Survey," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
  34. Christos Keramydas & Georgios Papadopoulos & Leonidas Ntziachristos & Ting-Shek Lo & Kwok-Lam Ng & Hok-Lai Anson Wong & Carol Ka-Lok Wong, 2018. "Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network," Energies, MDPI, vol. 11(10), pages 1-16, September.
  35. Xinkuo Xu & Xiaofeng Lv & Liyan Han, 2019. "Carbon Asset of Electrification: Valuing the Transition from Fossil Fuel-Powered Buses to Battery Electric Buses in Beijing," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
  36. O'Shea, R. & Wall, D.M. & McDonagh, S. & Murphy, J.D., 2017. "The potential of power to gas to provide green gas utilising existing CO2 sources from industries, distilleries and wastewater treatment facilities," Renewable Energy, Elsevier, vol. 114(PB), pages 1090-1100.
  37. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.
  38. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
  39. Pu Lyu & Yongjie Lin & Yuanqing Wang, 2019. "The impacts of household features on commuting carbon emissions: a case study of Xi’an, China," Transportation, Springer, vol. 46(3), pages 841-857, June.
  40. Zhang, Shaojun & Wu, Ye & Hu, Jingnan & Huang, Ruikun & Zhou, Yu & Bao, Xiaofeng & Fu, Lixin & Hao, Jiming, 2014. "Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China," Applied Energy, Elsevier, vol. 132(C), pages 118-126.
  41. Yang, Yuan & Wang, Can & Liu, Wenling & Zhou, Peng, 2017. "Microsimulation of low carbon urban transport policies in Beijing," Energy Policy, Elsevier, vol. 107(C), pages 561-572.
  42. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2016. "Cost-optimized design of a dual-mode diesel parallel hybrid electric vehicle for several driving missions and market scenarios," Applied Energy, Elsevier, vol. 177(C), pages 366-383.
  43. Vasco Simões & Leandro Pereira & Álvaro Dias, 2023. "Enhancing Sustainable Business Models for Green Transportation," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
  44. Alberto Romero-Ania & Lourdes Rivero Gutiérrez & María Auxiliadora De Vicente Oliva, 2021. "Multiple Criteria Decision Analysis of Sustainable Urban Public Transport Systems," Mathematics, MDPI, vol. 9(16), pages 1-30, August.
  45. Qian Zhao & Wenke Huang & Mingwei Hu & Xiaoxiao Xu & Wenlin Wu, 2021. "Characterizing the Economic and Environmental Benefits of LNG Heavy-Duty Trucks: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
  46. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
  47. Roberto Finesso & Daniela Misul & Ezio Spessa & Mattia Venditti, 2018. "Optimal Design of Power-Split HEVs Based on Total Cost of Ownership and CO 2 Emission Minimization," Energies, MDPI, vol. 11(7), pages 1-28, July.
  48. Yu, Qian & Li, Tiezhu & Li, Hu, 2016. "Improving urban bus emission and fuel consumption modeling by incorporating passenger load factor for real world driving," Applied Energy, Elsevier, vol. 161(C), pages 101-111.
  49. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
  50. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
  51. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2014. "Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 134(C), pages 573-588.
  52. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
  53. Tingting Liu & Qian Zhang & Xiaowen Kang & Jiaqi Hou & Tao Luo & Yi Zhang, 2022. "Household Food Waste to Biogas in Västerås, Sweden: A Comprehensive Case Study of Waste Valorization," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
  54. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
  55. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Zhao, Wenbin & Qian, Yong, 2022. "Intelligent charge compression ignition combustion for range extender medium duty applications," Renewable Energy, Elsevier, vol. 187(C), pages 671-687.
  56. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.