IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2645-d1362553.html
   My bibliography  Save this article

Comparative Analysis of Sustainable Electrification in Mediterranean Public Transportation

Author

Listed:
  • Seyed Mahdi Miraftabzadeh

    (Electrical Engineering Faculty, Department of Energy, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy)

  • Babak Ranjgar

    (Electrical Engineering Faculty, Department of Energy, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy)

  • Alessandro Niccolai

    (Electrical Engineering Faculty, Department of Energy, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy)

  • Michela Longo

    (Electrical Engineering Faculty, Department of Energy, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy)

Abstract

The Mediterranean region is a hot spot for climate change, with transportation accounting for a quarter of global CO 2 emissions. To meet the 2030 Sustainable Development Goals (SDGs), a sustainable urban transport network is needed to cut carbon emissions and improve air quality. This study aims to investigate the electrification of public transport in both developed and underdeveloped countries by examining the existing public transport network of two modes of transportation (buses and trams) across the Mediterranean region. This study suggests that the electrification of public transportation could result in a significant additional demand for more than 200 GWh of electricity, depending on the size and congestion of the city. It also studies the potential reduction of greenhouse gas (GHG) emissions through the electrification of buses. Results show that electrification significantly impacts decreasing GHG emissions, helping achieve SDG 13. Furthermore, a financial analysis was conducted to determine the feasibility of using different bus fuel technologies. Regarding economic benefits, electric buses are not consistently optimal solutions, and diesel buses can be advantageous. Our finding shows that, at a 5% discount rate, the diesel bus is most favorable for Marseille, and, as discount rates increase, the advantage of electric buses diminishes. However, the high purchase price of electric buses compared to diesel buses is currently a major obstacle in achieving SDG 11, particularly for developing countries.

Suggested Citation

  • Seyed Mahdi Miraftabzadeh & Babak Ranjgar & Alessandro Niccolai & Michela Longo, 2024. "Comparative Analysis of Sustainable Electrification in Mediterranean Public Transportation," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2645-:d:1362553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panagiotis Eleftheriadis & Spyridon Giazitzis & Sonia Leva & Emanuele Ogliari, 2023. "Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview," Forecasting, MDPI, vol. 5(3), pages 1-24, September.
    2. Eliasson, Jonas & Fosgerau, Mogens, 2019. "Cost-benefit analysis of transport improvements in the presence of spillovers, matching and an income tax," Economics of Transportation, Elsevier, vol. 18(C), pages 1-9.
    3. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    4. Baabou, Wafaa & Grunewald, Nicole & Ouellet-Plamondon, Claudiane & Gressot, Michel & Galli, Alessandro, 2017. "The Ecological Footprint of Mediterranean cities: Awareness creation and policy implications," Environmental Science & Policy, Elsevier, vol. 69(C), pages 94-104.
    5. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastida-Molina, Paula & Ribó-Pérez, David & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2022. "What is the problem? The obstacles to the electrification of urban mobility in Mediterranean cities. Case study of Valencia, Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    3. Yung-Jaan Lee, 2022. "Hybrid Ecological Footprint of Taipei," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    4. Thorne, Rebecca Jayne & Hovi, Inger Beate & Figenbaum, Erik & Pinchasik, Daniel Ruben & Amundsen, Astrid Helene & Hagman, Rolf, 2021. "Facilitating adoption of electric buses through policy: Learnings from a trial in Norway," Energy Policy, Elsevier, vol. 155(C).
    5. Haiqian Ke & Wenyi Yang & Xiaoyang Liu & Fei Fan, 2020. "Does Innovation Efficiency Suppress the Ecological Footprint? Empirical Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 17(18), pages 1-23, September.
    6. Silvio Franco & Barbara Pancino & Angelo Martella, 2021. "Mapping National Environmental Sustainability Distribution by Ecological Footprint: The Case of Italy," Sustainability, MDPI, vol. 13(15), pages 1-14, August.
    7. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    8. Kisała Magdalena, 2021. "The Polish Experience in the Development of Smart Cities," TalTech Journal of European Studies, Sciendo, vol. 11(2), pages 48-64, September.
    9. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    10. Eliasson, Jonas & Savemark, Christian & Franklin, Joel, 2020. "The impact of land use effects in infrastructure appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 262-276.
    11. Hanna Obracht-Prondzyńska & Ewa Duda & Helena Anacka & Jolanta Kowal, 2022. "Greencoin as an AI-Based Solution Shaping Climate Awareness," IJERPH, MDPI, vol. 19(18), pages 1-25, September.
    12. Riukula, Krista & Väänänen, Touko, 2024. "Estimating the Labour Market Impacts of Transport Projects in Finland," ETLA Working Papers 120, The Research Institute of the Finnish Economy.
    13. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Pamučar, Dragan & Durán-Romero, Gemma & Yazdani, Morteza & López, Ana M., 2023. "A decision analysis model for smart mobility system development under circular economy approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    15. Carlo Amendola & Simone La Bella & Gian Piero Joime & Fabio Massimo Frattale Mascioli & Pietro Vito, 2022. "An Integrated Methodology Model for Smart Mobility System Applied to Sustainable Tourism," Administrative Sciences, MDPI, vol. 12(1), pages 1-14, March.
    16. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    17. Małgorzata Świąder & Szymon Szewrański & Jan K. Kazak, 2018. "Foodshed as an Example of Preliminary Research for Conducting Environmental Carrying Capacity Analysis," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    18. Asplund, Disa & Pyddoke, Roger, 2020. "Optimal fares and frequencies for bus services in a small city," Research in Transportation Economics, Elsevier, vol. 80(C).
    19. Simona Ioana Ghita & Andreea Simona Saseanu & Rodica-Manuela Gogonea & Catalin-Emilian Huidumac-Petrescu, 2018. "Perspectives of Ecological Footprint in European Context under the Impact of Information Society and Sustainable Development," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    20. Gnap Jozef & Dočkalik Marek & Dydkowski Grzegorz, 2021. "Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 147-158, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2645-:d:1362553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.