IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp671-687.html
   My bibliography  Save this article

Intelligent charge compression ignition combustion for range extender medium duty applications

Author

Listed:
  • García, Antonio
  • Monsalve-Serrano, Javier
  • Martinez-Boggio, Santiago
  • Zhao, Wenbin
  • Qian, Yong

Abstract

Electrified powertrains have been growth in the last few years due to the increase in powertrain efficiency. However, for heavy-duty vehicles the right choice it is not clear. The long-routes and large number of daily kilometres makes that current battery technology it is not prepared to cover the minimum requirements. A mid-term solution is hybrid powertrains. The mix between pure electric range and range extender mode in liquid fuels make perfect to complete a large distance. However, tailpipe pollutant and CO2 emissions are still a disadvantage against pure electric powertrain. This study analyses the potential of hybrid powertrains running in an advanced combustion mode as Intelligent Charge Compression Ignition. Due to the flexibility of the combustion mode different renewable energy fuels are tested: Butanol, Methanol and Biodiesel. The work is focused in urban buses due to the potential of electrified powertrains in this context and the large number of vehicles concentrated in cities. The results show that pure electric bus reduce 54% the CO2 emissions at LCA level. Meanwhile the Intelligent Charge Compression Ignition allows to 32% with one renewable fuel (Diesel-Butanol) and 66% with two renewable fuels (Biodiesel-Methanol) with respect to the non-hybrid diesel reference.

Suggested Citation

  • García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Zhao, Wenbin & Qian, Yong, 2022. "Intelligent charge compression ignition combustion for range extender medium duty applications," Renewable Energy, Elsevier, vol. 187(C), pages 671-687.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:671-687
    DOI: 10.1016/j.renene.2022.01.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2021. "Energy management optimization for a power-split hybrid in a dual-mode RCCI-CDC engine," Applied Energy, Elsevier, vol. 302(C).
    2. Millo, Federico & Rolando, Luciano & Fuso, Rocco & Zhao, Jianning, 2015. "Development of a new hybrid bus for urban public transportation," Applied Energy, Elsevier, vol. 157(C), pages 583-594.
    3. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    4. Shen, Wei & Han, Weijian & Chock, David & Chai, Qinhu & Zhang, Aling, 2012. "Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China," Energy Policy, Elsevier, vol. 49(C), pages 296-307.
    5. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    6. Shojaabadi, Saeed & Abapour, Saeed & Abapour, Mehdi & Nahavandi, Ali, 2016. "Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties," Renewable Energy, Elsevier, vol. 99(C), pages 237-252.
    7. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
    8. Astrid Nilsson & Kiyan Shabestary & Miguel Brandão & Elton P. Hudson, 2020. "Environmental impacts and limitations of third‐generation biobutanol: Life cycle assessment of n‐butanol produced by genetically engineered cyanobacteria," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 205-216, February.
    9. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Martinez-Boggio, Santiago, 2022. "Energy assessment of an electrically heated catalyst in a hybrid RCCI truck," Energy, Elsevier, vol. 238(PA).
    10. Soloiu, Valentin & Gaubert, Remi & Moncada, Jose & Wiley, Justin & Williams, Johnnie & Harp, Spencer & Ilie, Marcel & Molina, Gustavo & Mothershed, David, 2019. "Reactivity controlled compression ignition and low temperature combustion of Fischer-Tropsch Fuel Blended with n-butanol," Renewable Energy, Elsevier, vol. 134(C), pages 1173-1189.
    11. Jiang, Li & Li, Yong & Ma, Jianmin & Cao, Yijia & Huang, Chun & Xu, Yong & Chen, Hong & Huang, Yuduo, 2020. "Hybrid charging strategy with adaptive current control of lithium-ion battery for electric vehicles," Renewable Energy, Elsevier, vol. 160(C), pages 1385-1395.
    12. Dixon, James & Bukhsh, Waqquas & Edmunds, Calum & Bell, Keith, 2020. "Scheduling electric vehicle charging to minimise carbon emissions and wind curtailment," Renewable Energy, Elsevier, vol. 161(C), pages 1072-1091.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Keramydas & Georgios Papadopoulos & Leonidas Ntziachristos & Ting-Shek Lo & Kwok-Lam Ng & Hok-Lai Anson Wong & Carol Ka-Lok Wong, 2018. "Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network," Energies, MDPI, vol. 11(10), pages 1-16, September.
    2. Xylia, Maria & Silveira, Semida, 2018. "The role of charging technologies in upscaling the use of electric buses in public transport: Experiences from demonstration projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 399-415.
    3. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    4. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    5. Weiwei Yang & Jiejunyi Liang & Jue Yang & Nong Zhang, 2018. "Investigation of a Novel Coaxial Power-Split Hybrid Powertrain for Mining Trucks," Energies, MDPI, vol. 11(1), pages 1-18, January.
    6. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.
    7. Lin, Boqiang & Tan, Ruipeng, 2017. "Are people willing to pay more for new energy bus fares?," Energy, Elsevier, vol. 130(C), pages 365-372.
    8. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
    9. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    10. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    11. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    12. Sun, Lu & Liu, Wenjing & Li, Zhaoling & Cai, Bofeng & Fujii, Minoru & Luo, Xiao & Chen, Wei & Geng, Yong & Fujita, Tsuyoshi & Le, Yiping, 2021. "Spatial and structural characteristics of CO2 emissions in East Asian megacities and its indication for low-carbon city development," Applied Energy, Elsevier, vol. 284(C).
    13. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    14. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    15. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    16. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    17. Tan, Kang Miao & Padmanaban, Sanjeevikumar & Yong, Jia Ying & Ramachandaramurthy, Vigna K., 2019. "A multi-control vehicle-to-grid charger with bi-directional active and reactive power capabilities for power grid support," Energy, Elsevier, vol. 171(C), pages 1150-1163.
    18. Nikiforos Zacharof & Evangelos Bitsanis & Stijn Broekaert & Georgios Fontaras, 2024. "Reducing CO 2 Emissions of Hybrid Heavy-Duty Trucks and Buses: Paving the Transition to Low-Carbon Transport," Energies, MDPI, vol. 17(2), pages 1-26, January.
    19. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    20. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:671-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.