IDEAS home Printed from https://ideas.repec.org/r/cam/camdae/1255.html
   My bibliography  Save this item

Filtering with heavy tails

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Enzo D'Innocenzo & André Lucas & Anne Opschoor & Xingmin Zhang, 2024. "Heterogeneity and dynamics in network models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 150-173, January.
  2. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
  3. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
  4. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
  5. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal Quasi-Vector Autoregressive Models with an Application to Crude Oil Production and Economic Activity in the United States and Canada," UC3M Working papers. Economics 27484, Universidad Carlos III de Madrid. Departamento de Economía.
  6. Sampi Bravo,James Robert Ezequiel & Jooste,Charl & Vostroknutova,Ekaterina, 2021. "Identification Properties for Estimating the Impact of Regulation on Markups and Productivity," Policy Research Working Paper Series 9523, The World Bank.
  7. Saverio Ranciati & Alberto Roverato & Alessandra Luati, 2021. "Fused graphical lasso for brain networks with symmetries," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1299-1322, November.
  8. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
  9. Blasques, F. & van Brummelen, J. & Gorgi, P. & Koopman, S.J., 2024. "A robust Beveridge–Nelson decomposition using a score-driven approach with an application," Economics Letters, Elsevier, vol. 236(C).
  10. Umlandt, Dennis, 2023. "Score-driven asset pricing: Predicting time-varying risk premia based on cross-sectional model performance," Journal of Econometrics, Elsevier, vol. 237(2).
  11. Roman Frydman & Søren Johansen & Anders Rahbek & Morten Nyboe Tabor, 2017. "The Qualitative Expectations Hypothesis: Model Ambiguity, Consistent Representations of Market Forecasts, and Sentiment," CREATES Research Papers 2017-23, Department of Economics and Business Economics, Aarhus University.
  12. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
  13. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
  14. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
  15. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
  16. Blasques, F. & Gorgi, P. & Koopman, S.J., 2021. "Missing observations in observation-driven time series models," Journal of Econometrics, Elsevier, vol. 221(2), pages 542-568.
  17. Michel Ferreira Cardia Haddad & Szabolcs Blazsek & Philip Arestis & Franz Fuerst & Hsia Hua Sheng, 2023. "The two-component Beta-t-QVAR-M-lev: a new forecasting model," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 379-401, December.
  18. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
  19. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
  20. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
  21. Tranberg, Bo & Hansen, Rasmus Thrane & Catania, Leopoldo, 2020. "Managing volumetric risk of long-term power purchase agreements," Energy Economics, Elsevier, vol. 85(C).
  22. Tatjana Dahlhaus & Julia Schaumburg & Tatevik Sekhposyan, 2021. "Networking the Yield Curve: Implications for Monetary Policy," Staff Working Papers 21-4, Bank of Canada.
  23. Paolo Gorgi, 2020. "Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1325-1347, December.
  24. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
  25. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
  26. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
  27. Francisco Blasques & Enzo D'Innocenzo & Siem Jan Koopman, 2021. "Common and Idiosyncratic Conditional Volatility Factors: Theory and Empirical Evidence," Tinbergen Institute Discussion Papers 21-057/III, Tinbergen Institute.
  28. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
  29. Astrid Ayala & Szabolcs Blazsek, 2019. "Score-driven currency exchange rate seasonality as applied to the Guatemalan Quetzal/US Dollar," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(1), pages 65-92, March.
  30. Blazsek Szabolcs & Escribano Alvaro & Licht Adrian, 2021. "Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 53-66, January.
  31. F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
  32. Astrid Ayala & Szabolcs Blazsek & Adrian Licht, 2022. "Score-driven stochastic seasonality of the Russian rouble: an application case study for the period of 1999 to 2020," Empirical Economics, Springer, vol. 62(5), pages 2179-2203, May.
  33. Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).
  34. Deniz Erer, 2023. "The Impact of News Related Covid-19 on Exchange Rate Volatility:A New Evidence From Generalized Autoregressive Score Model," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(38), pages 105-126, June.
  35. Lucas, André & Opschoor, Anne & Schaumburg, Julia, 2016. "Accounting for missing values in score-driven time-varying parameter models," Economics Letters, Elsevier, vol. 148(C), pages 96-98.
  36. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal quasi-vector autoregressive models for macroeconomic data," UC3M Working papers. Economics 26316, Universidad Carlos III de Madrid. Departamento de Economía.
  37. Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
  38. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
  39. Siem Jan Koopman & Rutger Lit & André Lucas, 2015. "Intraday Stock Price Dependence using Dynamic Discrete Copula Distributions," Tinbergen Institute Discussion Papers 15-037/III/DSF90, Tinbergen Institute.
  40. P. Gorgi & Siem Jan (S.J.) Koopman & R. Lit, 2018. "The analysis and forecasting of ATP tennis matches using a high-dimensional dynamic model," Tinbergen Institute Discussion Papers 18-009/III, Tinbergen Institute.
  41. Telg, Sean & Dubinova, Anna & Lucas, Andre, 2023. "Covid-19, credit risk management modeling, and government support," Journal of Banking & Finance, Elsevier, vol. 147(C).
  42. Anne Opschoor & André Lucas, 2019. "Observation-driven Models for Realized Variances and Overnight Returns," Tinbergen Institute Discussion Papers 19-052/IV, Tinbergen Institute.
  43. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
  44. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
  45. Blasques, Francisco & Lucas, André & van Vlodrop, Andries C., 2021. "Finite Sample Optimality of Score-Driven Volatility Models: Some Monte Carlo Evidence," Econometrics and Statistics, Elsevier, vol. 19(C), pages 47-57.
  46. repec:wrk:wrkemf:13 is not listed on IDEAS
  47. Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2017. "Accelerating GARCH and Score-Driven Models: Optimality, Estimation and Forecasting," Tinbergen Institute Discussion Papers 17-059/III, Tinbergen Institute.
  48. Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.
  49. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
  50. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
  51. Rutger-Jan Lange & Bram van Os & Dick van Dijk, 2022. "Implicit score-driven filters for time-varying parameter models," Tinbergen Institute Discussion Papers 22-066/III, Tinbergen Institute, revised 21 Nov 2024.
  52. Blasques, F. & Gorgi, P. & Koopman, S.J., 2019. "Accelerating score-driven time series models," Journal of Econometrics, Elsevier, vol. 212(2), pages 359-376.
  53. F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
  54. Harvey, A. & Hurn, S. & Thiele, S., 2019. "Modeling directional (circular) time series," Cambridge Working Papers in Economics 1971, Faculty of Economics, University of Cambridge.
  55. Anna Dubinova & Andre Lucas & Sean Telg, 2021. "COVID-19, Credit Risk and Macro Fundamentals," Tinbergen Institute Discussion Papers 21-059/III, Tinbergen Institute.
  56. Giovanni Angelini & Paolo Gorgi, 2018. "DSGE Models with Observation-Driven Time-Varying parameters," Tinbergen Institute Discussion Papers 18-030/III, Tinbergen Institute.
  57. Kazim Azam & Andre Lucas, 2015. "Mixed Density based Copula Likelihood," Tinbergen Institute Discussion Papers 15-003/IV/DSF084, Tinbergen Institute.
  58. Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
  59. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
  60. Enzo D’Innocenzo & Alessandra Luati & Mario Mazzocchi, 2023. "A robust score-driven filter for multivariate time series," Econometric Reviews, Taylor & Francis Journals, vol. 42(5), pages 441-470, May.
  61. Khalaf, Lynda & Saunders, Charles J., 2017. "Monte Carlo forecast evaluation with persistent data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 1-10.
  62. Szabolcs Blazsek & Hector Hernández, 2018. "Analysis of electricity prices for Central American countries using dynamic conditional score models," Empirical Economics, Springer, vol. 55(4), pages 1807-1848, December.
  63. Opschoor, Anne & Lucas, André, 2021. "Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 622-633.
  64. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
  65. Beaumont, Adrian N., 2014. "Data transforms with exponential smoothing methods of forecasting," International Journal of Forecasting, Elsevier, vol. 30(4), pages 918-927.
  66. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
  67. Blazsek, Szabolcs & Licht, Adrian, 2019. "Markov-switching score-driven multivariate models: outlier-robust measurement of the relationships between world crude oil production and US industrial production," UC3M Working papers. Economics 29030, Universidad Carlos III de Madrid. Departamento de Economía.
  68. Ito, R., 2016. "Spline-DCS for Forecasting Trade Volume in High-Frequency Finance," Cambridge Working Papers in Economics 1606, Faculty of Economics, University of Cambridge.
  69. Eric A. Beutner & Yicong Lin & Andre Lucas, 2023. "Consistency, distributional convergence, and optimality of score-driven filters," Tinbergen Institute Discussion Papers 23-051/III, Tinbergen Institute.
  70. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
  71. Martin Weale & Paul Labonne, 2022. "Nowcasting in the presence of large measurement errors and revisions," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-05, Economic Statistics Centre of Excellence (ESCoE).
  72. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
  73. Michele Caivano & Andrew Harvey & Alessandra Luati, 2016. "Robust time series models with trend and seasonal components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 99-120, March.
  74. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
  75. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
  76. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
  77. Heil, Thomas L.A. & Peter, Franziska J. & Prange, Philipp, 2022. "Measuring 25 years of global equity market co-movement using a time-varying spatial model," Journal of International Money and Finance, Elsevier, vol. 128(C).
  78. Andre Lucas & Bernd Schwaab & Xin Zhang, 2013. "Measuring Credit Risk in a Large Banking System: Econometric Modeling and Empirics," Tinbergen Institute Discussion Papers 13-063/IV/DSF56, Tinbergen Institute, revised 13 Oct 2014.
  79. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.