IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v42y2023i5p441-470.html
   My bibliography  Save this article

A robust score-driven filter for multivariate time series

Author

Listed:
  • Enzo D’Innocenzo
  • Alessandra Luati
  • Mario Mazzocchi

Abstract

A multivariate score-driven filter is developed to extract signals from noisy vector processes. By assuming that the conditional location vector from a multivariate Student’s t distribution changes over time, we construct a robust filter which is able to overcome several issues that naturally arise when modeling heavy-tailed phenomena and, more in general, vectors of dependent non-Gaussian time series. We derive conditions for stationarity and invertibility and estimate the unknown parameters by maximum likelihood. Strong consistency and asymptotic normality of the estimator are derived. Analytical formulae are derived which consent to develop estimation procedures based on a fast and reliable Fisher scoring method. An extensive Monte–Carlo study is designed to assess the finite samples properties of the estimator, the impact of initial conditions on the filtered sequence, the performance when some of the underlying assumptions are violated, such as symmetry of the underlying distribution and homogeneity of the degrees of freedom parameter across marginals. The theory is supported by a novel empirical illustration that shows how the model can be effectively applied to estimate consumer prices from home scanner data.

Suggested Citation

  • Enzo D’Innocenzo & Alessandra Luati & Mario Mazzocchi, 2023. "A robust score-driven filter for multivariate time series," Econometric Reviews, Taylor & Francis Journals, vol. 42(5), pages 441-470, May.
  • Handle: RePEc:taf:emetrv:v:42:y:2023:i:5:p:441-470
    DOI: 10.1080/07474938.2023.2198930
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2023.2198930
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2023.2198930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014. "Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
    2. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    3. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723.
    4. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    5. White,Halbert, 1994. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521252805.
    6. Andrew Harvey & Alessandra Luati, 2014. "Filtering With Heavy Tails," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
    7. Daniel Melser, 2018. "Scanner Data Price Indexes: Addressing Some Unresolved Issues," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 516-522, July.
    8. André Lucas & Julia Schaumburg & Bernd Schwaab, 2019. "Bank Business Models at Zero Interest Rates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 542-555, July.
    9. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    10. Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
    11. Mick Silver, 1995. "Elementary Aggregates, Micro‐Indices And Scanner Data: Some Issues In The Compilation Of Consumer Price Indices," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 41(4), pages 427-438, December.
    12. Ivancic, Lorraine & Erwin Diewert, W. & Fox, Kevin J., 2011. "Scanner data, time aggregation and the construction of price indexes," Journal of Econometrics, Elsevier, vol. 161(1), pages 24-35, March.
    13. Kaplan, Greg & Schulhofer-Wohl, Sam, 2017. "Inflation at the household level," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 19-38.
    14. Sara Capacci & Olivier Allais & Celine Bonnet & Mario Mazzocchi, 2019. "The impact of the French soda tax on prices and purchases. An ex post evaluation," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-22, October.
    15. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    16. T. S. Breusch & J. C. Robertson & A. H. Welsh, 1997. "The emperor's new clothes: a critique of the multivariate t regression model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 51(3), pages 269-286, November.
    17. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    18. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    19. Silver, Mick & Heravi, Saeed, 2001. "Scanner Data and the Measurement of Inflation," Economic Journal, Royal Economic Society, vol. 111(472), pages 383-404, June.
    20. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    21. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549.
    22. Prucha, Ingmar R & Kelejian, Harry H, 1984. "The Structure of Simultaneous Equation Estimators: A Generalization towards Nonnormal Disturbances," Econometrica, Econometric Society, vol. 52(3), pages 721-736, May.
    23. Michele Caivano & Andrew Harvey & Alessandra Luati, 2016. "Robust time series models with trend and seasonal components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 99-120, March.
    24. Diewert, W. Erwin & Fox, Kevin J. & de Haan, Jan, 2016. "A newly identified source of potential CPI bias: Weekly versus monthly unit value price indexes," Economics Letters, Elsevier, vol. 141(C), pages 169-172.
    25. Robert C. Feenstra & Matthew D. Shapiro, 2003. "Scanner Data and Price Indexes," NBER Books, National Bureau of Economic Research, Inc, number feen03-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    2. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    3. Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
    5. Blasques, F. & Gorgi, P. & Koopman, S.J., 2021. "Missing observations in observation-driven time series models," Journal of Econometrics, Elsevier, vol. 221(2), pages 542-568.
    6. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    7. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
    8. Lucas, André & Opschoor, Anne & Schaumburg, Julia, 2016. "Accounting for missing values in score-driven time-varying parameter models," Economics Letters, Elsevier, vol. 148(C), pages 96-98.
    9. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    10. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    11. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    12. Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2017. "Accelerating GARCH and Score-Driven Models: Optimality, Estimation and Forecasting," Tinbergen Institute Discussion Papers 17-059/III, Tinbergen Institute.
    13. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal quasi-vector autoregressive models for macroeconomic data," UC3M Working papers. Economics 26316, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    15. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    16. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    17. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
    18. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    19. Martin Weale & Paul Labonne, 2022. "Nowcasting in the presence of large measurement errors and revisions," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-05, Economic Statistics Centre of Excellence (ESCoE).
    20. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:42:y:2023:i:5:p:441-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.