My bibliography
Save this item
Generalized additive modelling of sample extremes
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jo~ao Nicolau & Paulo M. M. Rodrigues, 2024. "A simple but powerful tail index regression," Papers 2409.13531, arXiv.org.
- Moins, Théo & Arbel, Julyan & Girard, Stéphane & Dutfoy, Anne, 2023. "Reparameterization of extreme value framework for improved Bayesian workflow," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Stan Tendijck & Philip Jonathan & David Randell & Jonathan Tawn, 2024. "Temporal evolution of the extreme excursions of multivariate k$$ k $$th order Markov processes with application to oceanographic data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
- Adam Butler & Janet E. Heffernan & Jonathan A. Tawn & Roger A. Flather, 2007. "Trend estimation in extremes of synthetic North Sea surges," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 395-414, August.
- Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
- Joshua S. North & Erin M. Schliep & Christopher K. Wikle, 2021. "On the spatial and temporal shift in the archetypal seasonal temperature cycle as driven by annual and semi‐annual harmonics," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
- Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011.
"On kernel smoothing for extremal quantile regression,"
LIDAM Discussion Papers ISBA
2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2013. "On kernel smoothing for extremal quantile regression," LIDAM Reprints ISBA 2013038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
- Christoph Marty & Juliette Blanchet, 2012. "Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics," Climatic Change, Springer, vol. 111(3), pages 705-721, April.
- Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
- António Rua & Miguel de Carvalho, 2010. "Nonstationary Extremes and the US Business Cycle," Working Papers w201003, Banco de Portugal, Economics and Research Department.
- James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
- Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
- Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
- Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
- Abdelaati Daouia & Laurent Gardes & Stéphane Girard & Alexandre Lekina, 2011. "Kernel estimators of extreme level curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 311-333, August.
- Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
- Zhang, Qingzhao & Li, Deyuan & Wang, Hansheng, 2013. "A note on tail dependence regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 163-172.
- Gardes, Laurent & Girard, Stéphane, 2008. "A moving window approach for nonparametric estimation of the conditional tail index," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2368-2388, November.
- Yingjie Wang & Xinsheng Liu, 2022. "A New Point Process Regression Extreme Model Using a Dirichlet Process Mixture of Weibull Distribution," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
- Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
- Rémillard, Bruno & Nasri, Bouchra & Bouezmarni, Taoufik, 2017. "On copula-based conditional quantile estimators," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 14-20.
- Dimitrios Koutmos & Wang Chun Wei, 2023. "Nowcasting bitcoin’s crash risk with order imbalance," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 125-154, July.
- Setareh Ranjbar & Eva Cantoni & Valérie Chavez‐Demoulin & Giampiero Marra & Rosalba Radice & Katia Jaton, 2022. "Modelling the extremes of seasonal viruses and hospital congestion: The example of flu in a Swiss hospital," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 884-905, August.
- Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.
- Ross Towe & Jonathan Tawn & Emma Eastoe & Rob Lamb, 2020. "Modelling the Clustering of Extreme Events for Short-Term Risk Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 32-53, March.
- Hongyu An & Boping Tian, 2024. "Varying Index Coefficient Model for Tail Index Regression," Mathematics, MDPI, vol. 12(13), pages 1-35, June.
- Darmesah Gabda & Jonathan Tawn & Simon Brown, 2019. "A step towards efficient inference for trends in UK extreme temperatures through distributional linkage between observations and climate model data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1135-1154, September.
- Murphy-Barltrop, C.J.R. & Wadsworth, J.L., 2024. "Modelling non-stationarity in asymptotically independent extremes," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
- Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
- Raghupathi, Laks & Randell, David & Ewans, Kevin & Jonathan, Philip, 2016. "Fast computation of large scale marginal extremes with multi-dimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 243-258.
- E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
- M. de Carvalho & K. F. Turkman & A. Rua, 2013. "Dynamic threshold modelling and the US business cycle," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 535-550, August.
- M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
- Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.
- Francesca Biagini & Tobias Huber & Johannes G. Jaspersen & Andrea Mazzon, 2021. "Estimating extreme cancellation rates in life insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 971-1000, December.
- Evandro Konzen & Cláudia Neves & Philip Jonathan, 2021. "Modeling nonstationary extremes of storm severity: Comparing parametric and semiparametric inference," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
- Chiara Bocci & Enrica Caporali & Alessandra Petrucci, 2013. "Geoadditive modeling for extreme rainfall data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 181-193, April.
- Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
- Padoan, S.A. & Wand, M.P., 2008. "Mixed model-based additive models for sample extremes," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2850-2858, December.
- Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.