Geoadditive modeling for extreme rainfall data
Author
Abstract
Suggested Citation
DOI: 10.1007/s10182-012-0192-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cooley, Daniel & Nychka, Douglas & Naveau, Philippe, 2007. "Bayesian Spatial Modeling of Extreme Precipitation Return Levels," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 824-840, September.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
- V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
- A. C. Davison & N. I. Ramesh, 2000. "Local likelihood smoothing of sample extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 191-208.
- Padoan, S.A. & Wand, M.P., 2008. "Mixed model-based additive models for sample extremes," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2850-2858, December.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
- Marley, Jennifer K. & Wand, Matthew P., 2010. "Non-Standard Semiparametric Regression via BRugs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i05).
- Padoan, S. A. & Ribatet, M. & Sisson, S. A., 2010. "Likelihood-Based Inference for Max-Stable Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 263-277.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alejandro Ivan Aguirre-Salado & Carlos Arturo Aguirre-Salado & Ernesto Alvarado & Alicia Santiago-Santos & Guillermo Arturo Lancho-Romero, 2020. "On the Smoothing of the Generalized Extreme Value Distribution Parameters Using Penalized Maximum Likelihood: A Case Study on UVB Radiation Maxima in the Mexico City Metropolitan Area," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
- Alejandro Ivan Aguirre-Salado & Humberto Vaquera-Huerta & Carlos Arturo Aguirre-Salado & Silvia Reyes-Mora & Ana Delia Olvera-Cervantes & Guillermo Arturo Lancho-Romero & Carlos Soubervielle-Montalvo, 2017. "Developing a Hierarchical Model for the Spatial Analysis of PM 10 Pollution Extremes in the Mexico City Metropolitan Area," IJERPH, MDPI, vol. 14(7), pages 1-15, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
- Padoan, S.A. & Wand, M.P., 2008. "Mixed model-based additive models for sample extremes," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2850-2858, December.
- M. de Carvalho & K. F. Turkman & A. Rua, 2013. "Dynamic threshold modelling and the US business cycle," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 535-550, August.
- M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
- Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
- Chiara Bocci & Emilia Rocco, 2014. "Estimates for geographical domains through geoadditive models in presence of incomplete geographical information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 283-305, June.
- Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
- Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
- Naschold, Felix, 2012.
"“The Poor Stay Poor”: Household Asset Poverty Traps in Rural Semi-Arid India,"
World Development, Elsevier, vol. 40(10), pages 2033-2043.
- Naschold, Felix, 2009. "“Poor stays poor” - Household asset poverty traps in rural semi-arid India," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49396, Agricultural and Applied Economics Association.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
- Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
- Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017.
"Generalized partially linear regression with misclassified data and an application to labour market transitions,"
Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassied data and an application to labour market transitions," FDZ-Methodenreport 201510 (en), Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassified data and an application to labour market transitions," ZEW Discussion Papers 15-043, ZEW - Leibniz Centre for European Economic Research.
- Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014.
"Modeling structural change in the European metropolitan areas during the process of economic integration,"
Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
- Christian Longhi & Antonio Musolesi & Catherine Baumont, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Post-Print halshs-01228053, HAL.
- Kuhlenkasper, Torben & Kauermann, Göran, 2010. "Female wage profiles: An additive mixed model approach to employment breaks due to childcare," HWWI Research Papers 2-18, Hamburg Institute of International Economics (HWWI).
- Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
- Christian Schluter & Jackline Wahba, 2012. "Abstract: Illegal Migration, Wages, and Remittances: Semi-Parametric Estimation of Illegality Effects," Norface Discussion Paper Series 2012037, Norface Research Programme on Migration, Department of Economics, University College London.
- Zi Ye & Giles Hooker & Stephen P. Ellner, 2021. "Generalized Single Index Models and Jensen Effects on Reproduction and Survival," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 492-512, September.
- Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
More about this item
Keywords
Generalized extreme value distribution; Geoadditive model; Hydrologic processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:97:y:2013:i:2:p:181-193. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.