IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i5ne2624.html
   My bibliography  Save this article

Flexible covariate representations for extremes

Author

Listed:
  • E. Zanini
  • E. Eastoe
  • M. J. Jones
  • D. Randell
  • P. Jonathan

Abstract

Environmental extremes often show systematic variation with covariates. Three different nonparametric descriptions (penalized B‐splines, Bayesian adaptive regression splines, and Voronoi partition) for the dependence of extreme value model parameters on covariates are considered. These descriptions take the generic form of a linear combination of basis functions on the covariate domain, but differ (i) in the way that basis functions are constructed and possibly modified, and potentially (ii) by additional penalization of the variability (e.g., variance or roughness) of basis coefficients, for a given sample, to improve inference. The three representations are used to characterize variation of parameters in a nonstationary generalized Pareto model for the magnitude of threshold exceedances with respect to covariates. Computationally efficient schemes for Bayesian inference are used, including Riemann manifold Metropolis‐adjusted Langevin algorithm and reversible jump. A simulation study assesses relative performance of the three descriptions in estimating the distribution of the T‐year maximum event (for arbitrary T greater than the period of the sample) from a peaks over threshold extreme value analysis with respect to a single periodic covariate. The three descriptions are also used to estimate a directional tail model for peaks over threshold of storm peak significant wave height at a location in the northern North Sea.

Suggested Citation

  • E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:5:n:e2624
    DOI: 10.1002/env.2624
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2624
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. I. D. Currie & M. Durban & P. H. C. Eilers, 2006. "Generalized linear array models with applications to multidimensional smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 259-280, April.
    2. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    3. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    4. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    5. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    6. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    7. David Randell & Graham Feld & Kevin Ewans & Philip Jonathan, 2015. "Distributions of return values for ocean wave characteristics in the South China Sea using directional–seasonal extreme value analysis," Environmetrics, John Wiley & Sons, Ltd., vol. 26(6), pages 442-450, September.
    8. Raghupathi, Laks & Randell, David & Ewans, Kevin & Jonathan, Philip, 2016. "Fast computation of large scale marginal extremes with multi-dimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 243-258.
    9. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    10. M.‐O. Boldi & A. C. Davison, 2007. "A mixture model for multivariate extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 217-229, April.
    11. Stuart G. Coles & David Walshaw, 1994. "Directional Modelling of Extreme Wind Speeds," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 139-157, March.
    12. Denison, D. G. T. & Adams, N. M. & Holmes, C. C. & Hand, D. J., 2002. "Bayesian partition modelling," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 475-485, February.
    13. Paul J. Northrop & Nicolas Attalides & Philip Jonathan, 2017. "Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 93-120, January.
    14. Xifara, T. & Sherlock, C. & Livingstone, S. & Byrne, S. & Girolami, M., 2014. "Langevin diffusions and the Metropolis-adjusted Langevin algorithm," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 14-19.
    15. Wallstrom, Garrick & Liebner, Jeffrey & Kass, Robert E., 2008. "An Implementation of Bayesian Adaptive Regression Splines (BARS) in C with S and R Wrappers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 26(i01).
    16. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    17. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    2. Evandro Konzen & Cláudia Neves & Philip Jonathan, 2021. "Modeling nonstationary extremes of storm severity: Comparing parametric and semiparametric inference," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Ghelasi & Florian Ziel, 2024. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Papers 2406.00326, arXiv.org, revised Aug 2024.
    2. Bo Sun & Derek T. Robinson, 2018. "Comparison of Statistical Approaches for Modelling Land-Use Change," Land, MDPI, vol. 7(4), pages 1-33, November.
    3. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    4. Valtiala, Juho & Niskanen, Olli & Torvinen, Mikael & Riekkinen, Kirsikka & Suokannas, Antti, 2023. "The relationship between agricultural land parcel size and cultivation costs," Land Use Policy, Elsevier, vol. 131(C).
    5. Audrey C. Luo & Valerie J. Sydnor & Adam Pines & Bart Larsen & Aaron F. Alexander-Bloch & Matthew Cieslak & Sydney Covitz & Andrew A. Chen & Nathalia Bianchini Esper & Eric Feczko & Alexandre R. Franc, 2024. "Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Rodríguez-Álvarez, María Xosé & Lee, Dae-Jin & Kneib, Thomas & Durbán, María & Eilers, Paul, 2013. "Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines," DES - Working Papers. Statistics and Econometrics. WS ws133026, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    8. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    9. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    10. Sun, Tianyu & Chand, Satish & Sharpe, Keiran, 2018. "Effect of aging on housing prices: evidence from a panel data," MPRA Paper 94418, University Library of Munich, Germany, revised 01 Mar 2019.
    11. Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
    12. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    13. Scott Tainsky & Brian M. Mills & Jason A. Winfree, 2015. "Further Examination of Potential Discrimination Among MLB Umpires," Journal of Sports Economics, , vol. 16(4), pages 353-374, May.
    14. Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017. "A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
    15. Longhi, C. & Musolesi, A. & Baumont, C., 2013. "Modeling the industrial dynamics of the European metropolitan areas during the process of economic integration: a semiparametric approach," Working Papers 2013-10, Grenoble Applied Economics Laboratory (GAEL).
    16. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    17. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.
    18. Musolesi Antonio & Mazzanti Massimiliano, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
    19. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    20. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:5:n:e2624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.