IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v25y2020i1d10.1007_s13253-019-00376-0.html
   My bibliography  Save this article

Modelling the Clustering of Extreme Events for Short-Term Risk Assessment

Author

Listed:
  • Ross Towe

    (Lancaster University)

  • Jonathan Tawn

    (Lancaster University)

  • Emma Eastoe

    (Lancaster University)

  • Rob Lamb

    (JBA Trust
    Lancaster University)

Abstract

Reliable estimates of the occurrence rates of extreme events are highly important for insurance companies, government agencies and the general public. The rarity of an extreme event is typically expressed through its return period, i.e. the expected waiting time between events of the observed size if the extreme events of the processes are independent and identically distributed. A major limitation with this measure is when an unexpectedly high number of events occur within the next few months immediately after a T year event, with T large. Such instances undermine the trust in the quality of risk estimates. The clustering of apparently independent extreme events can occur as a result of local non-stationarity of the process, which can be explained by covariates or random effects. We show how accounting for these covariates and random effects provides more accurate estimates of return levels and aids short-term risk assessment through the use of a complementary new risk measure. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Ross Towe & Jonathan Tawn & Emma Eastoe & Rob Lamb, 2020. "Modelling the Clustering of Extreme Events for Short-Term Risk Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 32-53, March.
  • Handle: RePEc:spr:jagbes:v:25:y:2020:i:1:d:10.1007_s13253-019-00376-0
    DOI: 10.1007/s13253-019-00376-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-019-00376-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-019-00376-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linyin Cheng & Amir AghaKouchak & Eric Gilleland & Richard Katz, 2014. "Non-stationary extreme value analysis in a changing climate," Climatic Change, Springer, vol. 127(2), pages 353-369, November.
    2. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    3. Stuart G. Coles & Jonathan A. Tawn, 1996. "A Bayesian Analysis of Extreme Rainfall Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 463-478, December.
    4. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    5. Cooley, Daniel & Nychka, Douglas & Naveau, Philippe, 2007. "Bayesian Spatial Modeling of Extreme Precipitation Return Levels," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 824-840, September.
    6. Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.
    7. Caroline Keef & Jonathan Tawn & Cecilia Svensson, 2009. "Spatial risk assessment for extreme river flows," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 601-618, December.
    8. E. F. Eastoe, 2019. "Nonstationarity in peaks‐over‐threshold river flows: A regional random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 30(5), August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
    2. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    3. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    4. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
    5. Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
    6. C J Scarrott & A MacDonald, 2010. "Extreme-value-model-based risk assessment for nuclear reactors," Journal of Risk and Reliability, , vol. 224(4), pages 239-252, December.
    7. Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.
    8. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    9. Chiara Bocci & Enrica Caporali & Alessandra Petrucci, 2013. "Geoadditive modeling for extreme rainfall data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 181-193, April.
    10. Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
    11. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
    12. Yingjie Wang & Xinsheng Liu, 2022. "A New Point Process Regression Extreme Model Using a Dirichlet Process Mixture of Weibull Distribution," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
    13. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    14. M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
    15. M. de Carvalho & K. F. Turkman & A. Rua, 2013. "Dynamic threshold modelling and the US business cycle," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 535-550, August.
    16. Ranjana Ray Chaudhuri & Prateek Sharma, 2020. "Addressing uncertainty in extreme rainfall intensity for semi-arid urban regions: case study of Delhi, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2307-2324, December.
    17. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    18. Tadele Akeba Diriba & Legesse Kassa Debusho, 2020. "Modelling dependency effect to extreme value distributions with application to extreme wind speed at Port Elizabeth, South Africa: a frequentist and Bayesian approaches," Computational Statistics, Springer, vol. 35(3), pages 1449-1479, September.
    19. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    20. Erin M. Schliep & Alan E. Gelfand & Jesús Abaurrea & Jesús Asín & María A. Beamonte & Ana C. Cebrián, 2021. "Long‐term spatial modelling for characteristics of extreme heat events," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1070-1092, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:25:y:2020:i:1:d:10.1007_s13253-019-00376-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.