IDEAS home Printed from https://ideas.repec.org/p/ptu/wpaper/w201003.html
   My bibliography  Save this paper

Nonstationary Extremes and the US Business Cycle

Author

Listed:
  • António Rua
  • Miguel de Carvalho

Abstract

Considerable attention has been devoted to the statistical analysis of extreme events. Classical peaks over threshold methods are a popular modelling strategy for extreme value statistics of stationary data. For nonstationary series a variant of the peaks over threshold analysis is routinely applied using covariates as a means to overcome the lack of stationarity in the series of interest. In this paper we concern ourselves with extremes of possibly nonstationary processes. Given that our approach is, in some way, linked to the celebrated Box-Jenkins method, we refer to the procedure proposed and applied herein as Box-Jenkins-Pareto. Our procedure is particularly appropriate for settings where the parameter covariate model is non-trivial or when well qualified covariates are simply unavailable. We apply the Box-Jenkins-Pareto approach to the weekly number of unemployment insurance claims in the US and exploit the connection between threshold exceedances and the US business cycle.

Suggested Citation

  • António Rua & Miguel de Carvalho, 2010. "Nonstationary Extremes and the US Business Cycle," Working Papers w201003, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w201003
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/wp201003.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    2. Christoph Marty & Juliette Blanchet, 2012. "Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics," Climatic Change, Springer, vol. 111(3), pages 705-721, April.
    3. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Hongyu An & Boping Tian, 2024. "Varying Index Coefficient Model for Tail Index Regression," Mathematics, MDPI, vol. 12(13), pages 1-35, June.
    5. Francesca Biagini & Tobias Huber & Johannes G. Jaspersen & Andrea Mazzon, 2021. "Estimating extreme cancellation rates in life insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 971-1000, December.
    6. Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
    7. Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.
    8. Murphy-Barltrop, C.J.R. & Wadsworth, J.L., 2024. "Modelling non-stationarity in asymptotically independent extremes," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    9. Stan Tendijck & Philip Jonathan & David Randell & Jonathan Tawn, 2024. "Temporal evolution of the extreme excursions of multivariate k$$ k $$th order Markov processes with application to oceanographic data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    10. M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
    11. Darmesah Gabda & Jonathan Tawn & Simon Brown, 2019. "A step towards efficient inference for trends in UK extreme temperatures through distributional linkage between observations and climate model data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1135-1154, September.
    12. M. de Carvalho & K. F. Turkman & A. Rua, 2013. "Dynamic threshold modelling and the US business cycle," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 535-550, August.
    13. Jo~ao Nicolau & Paulo M. M. Rodrigues, 2024. "A simple but powerful tail index regression," Papers 2409.13531, arXiv.org.
    14. Dimitrios Koutmos & Wang Chun Wei, 2023. "Nowcasting bitcoin’s crash risk with order imbalance," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 125-154, July.
    15. Evandro Konzen & Cláudia Neves & Philip Jonathan, 2021. "Modeling nonstationary extremes of storm severity: Comparing parametric and semiparametric inference," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    16. Ross Towe & Jonathan Tawn & Emma Eastoe & Rob Lamb, 2020. "Modelling the Clustering of Extreme Events for Short-Term Risk Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 32-53, March.
    17. Zhang, Qingzhao & Li, Deyuan & Wang, Hansheng, 2013. "A note on tail dependence regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 163-172.
    18. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    19. Gardes, Laurent & Girard, Stéphane, 2008. "A moving window approach for nonparametric estimation of the conditional tail index," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2368-2388, November.
    20. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.

    More about this item

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w201003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEE-NTD (email available below). General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.