IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i6ne2665.html
   My bibliography  Save this article

On the spatial and temporal shift in the archetypal seasonal temperature cycle as driven by annual and semi‐annual harmonics

Author

Listed:
  • Joshua S. North
  • Erin M. Schliep
  • Christopher K. Wikle

Abstract

Statistical methods are required to evaluate and quantify the uncertainty in environmental processes, such as land and sea surface temperature, in a changing climate. Typically, annual harmonics are used to characterize the variation in the seasonal temperature cycle. However, an often overlooked feature of the climate seasonal cycle is the semi‐annual harmonic, which can account for a significant portion of the variance of the seasonal cycle and varies in amplitude and phase across space. Together, the spatial variation in the annual and semi‐annual harmonics can play an important role in driving processes that are tied to seasonality (e.g., ecological and agricultural processes). We propose a multivariate spatiotemporal model to quantify the spatial and temporal change in minimum and maximum temperature seasonal cycles as a function of the annual and semi‐annual harmonics. Our approach captures spatial dependence, temporal dynamics, and multivariate dependence of these harmonics through spatially and temporally varying coefficients. We apply the model to minimum and maximum temperature over North American for the years 1979–2018. Formal model inference within the Bayesian paradigm enables the identification of regions experiencing significant changes in minimum and maximum temperature seasonal cycles due to the relative effects of changes in the two harmonics.

Suggested Citation

  • Joshua S. North & Erin M. Schliep & Christopher K. Wikle, 2021. "On the spatial and temporal shift in the archetypal seasonal temperature cycle as driven by annual and semi‐annual harmonics," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:6:n:e2665
    DOI: 10.1002/env.2665
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2665
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. R. Stine & P. Huybers & I. Y. Fung, 2009. "Changes in the phase of the annual cycle of surface temperature," Nature, Nature, vol. 457(7228), pages 435-440, January.
    2. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    3. Nigel Arnell & Simon Gosling, 2016. "The impacts of climate change on river flood risk at the global scale," Climatic Change, Springer, vol. 134(3), pages 387-401, February.
    4. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    5. Andrew Finley & Sudipto Banerjee & Alan Gelfand, 2012. "Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes," Journal of Geographical Systems, Springer, vol. 14(1), pages 29-47, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. António Rua & Miguel de Carvalho, 2010. "Nonstationary Extremes and the US Business Cycle," Working Papers w201003, Banco de Portugal, Economics and Research Department.
    2. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    3. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    4. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    6. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    7. Christoph Marty & Juliette Blanchet, 2012. "Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics," Climatic Change, Springer, vol. 111(3), pages 705-721, April.
    8. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Swarupa Paudel & Neekita Joshi & Ajay Kalra, 2023. "Projected Future Flooding Pattern of Wabash River in Indiana and Fountain Creek in Colorado: An Assessment Utilizing Bias-Corrected CMIP6 Climate Data," Forecasting, MDPI, vol. 5(2), pages 1-19, April.
    10. Hongyu An & Boping Tian, 2024. "Varying Index Coefficient Model for Tail Index Regression," Mathematics, MDPI, vol. 12(13), pages 1-35, June.
    11. Stephen L Katz & Stephanie E Hampton & Lyubov R Izmest'eva & Marianne V Moore, 2011. "Influence of Long-Distance Climate Teleconnection on Seasonality of Water Temperature in the World's Largest Lake - Lake Baikal, Siberia," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-10, February.
    12. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    13. Francesca Biagini & Tobias Huber & Johannes G. Jaspersen & Andrea Mazzon, 2021. "Estimating extreme cancellation rates in life insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 971-1000, December.
    14. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
    16. Patault, Edouard & Ledun, Jérôme & Landemaine, Valentin & Soulignac, Arnaud & Richet, Jean-Baptiste & Fournier, Matthieu & Ouvry, Jean-François & Cerdan, Olivier & Laignel, Benoit, 2021. "Analysis of off-site economic costs induced by runoff and soil erosion: Example of two areas in the northwestern European loess belt for the last two decades (Normandy, France)," Land Use Policy, Elsevier, vol. 108(C).
    17. Ignacio Fraga & Luis Cea & Jerónimo Puertas, 2020. "MERLIN: a flood hazard forecasting system for coastal river reaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1171-1193, February.
    18. Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.
    19. Sudheer Padikkal & K. S. Sumam & N. Sajikumar, 2018. "Sustainability indicators of water sharing compacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2027-2042, October.
    20. Rosa Fernández Ropero & María Julia Flores & Rafael Rumí, 2022. "Bayesian Networks for Preprocessing Water Management Data," Mathematics, MDPI, vol. 10(10), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:6:n:e2665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.