IDEAS home Printed from https://ideas.repec.org/r/bes/jnlasa/v96y2001mdecemberp1361-1374.html
   My bibliography  Save this item

Objective Bayesian Analysis of Spatially Correlated Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Victor De Oliveira, 2009. "Bayesian Analysis Of Conditional Autoriegressive Models," Working Papers 0095, College of Business, University of Texas at San Antonio.
  2. Andrew J. Womack & Luis León-Novelo & George Casella, 2014. "Inference From Intrinsic Bayes' Procedures Under Model Selection and Uncertainty," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1040-1053, September.
  3. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.
  4. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
  5. Victor Oliveira, 2012. "Bayesian analysis of conditional autoregressive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 107-133, February.
  6. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
  7. Victor De Oliveira & Zifei Han, 2023. "Approximate reference priors for Gaussian random fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 296-326, March.
  8. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
  9. Ren, Cuirong & Sun, Dongchu, 2014. "Objective Bayesian analysis for autoregressive models with nugget effects," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 260-280.
  10. Wen Wang & Jinkang Zhu & Sihai Zhang & Wuyang Zhou, 2018. "Tradeoff between compression ratio and decoding delay of distributed source coding for uplink transmissions in machine-type communication," International Journal of Distributed Sensor Networks, , vol. 14(7), pages 15501477187, July.
  11. Xiao, Qian & Xu, Hongquan, 2021. "A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  12. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
  13. Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  14. Cuirong Ren & Dongchu Sun, 2013. "Objective Bayesian analysis for CAR models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 457-472, June.
  15. Sun, Xiaoqian & He, Zhuoqiong & Kabrick, John, 2008. "Bayesian spatial prediction of the site index in the study of the Missouri Ozark Forest Ecosystem Project," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3749-3764, March.
  16. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
  17. Muhammad Mohsin & Hannes Kazianka & Jürgen Pilz & Albrecht Gebhardt, 2014. "A new bivariate exponential distribution for modeling moderately negative dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 123-148, March.
  18. repec:jss:jstsof:19:i02 is not listed on IDEAS
  19. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
  20. Planas Christophe & Rossi Alessandro, 2024. "The slice sampler and centrally symmetric distributions," Monte Carlo Methods and Applications, De Gruyter, vol. 30(3), pages 299-313.
  21. Gunnar Taraldsen & Jarle Tufto & Bo H. Lindqvist, 2022. "Improper priors and improper posteriors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 969-991, September.
  22. Paciorek, Christopher J., 2007. "Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i02).
  23. Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
  24. Kim, Hyoung-Moon & Mallick, Bani K., 2003. "A note on Bayesian spatial prediction using the elliptical distribution," Statistics & Probability Letters, Elsevier, vol. 64(3), pages 271-276, September.
  25. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
  26. Kazianka, Hannes, 2012. "Objective Bayesian analysis for the normal compositional model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1528-1544.
  27. Majid Khaledi & Firoozeh Rivaz, 2009. "Empirical Bayes spatial prediction using a Monte Carlo EM algorithm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 35-47, March.
  28. Oliver M. Crook & Colin T. R. Davies & Lisa M. Breckels & Josie A. Christopher & Laurent Gatto & Paul D. W. Kirk & Kathryn S. Lilley, 2022. "Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
  29. Stefano F. Tonellato, 2005. "Identifiability Conditions for Spatio-Temporal Bayesian Dynamic Linear Models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 81-101.
  30. Gramacy, Robert B. & Lee, Herbert K.H., 2008. "Gaussian processes and limiting linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 123-136, September.
  31. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.