Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-33570-9
Download full text from publisher
References listed on IDEAS
- Oliver M Crook & Claire M Mulvey & Paul D W Kirk & Kathryn S Lilley & Laurent Gatto, 2018. "A Bayesian mixture modelling approach for spatial proteomics," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-29, November.
- Lisa M Breckels & Sean B Holden & David Wojnar & Claire M Mulvey & Andy Christoforou & Arnoud Groen & Matthew W B Trotter & Oliver Kohlbacher & Kathryn S Lilley & Laurent Gatto, 2016. "Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-26, May.
- Alexandra K. Davies & Daniel N. Itzhak & James R. Edgar & Tara L. Archuleta & Jennifer Hirst & Lauren P. Jackson & Margaret S. Robinson & Georg H. H. Borner, 2018. "AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A," Nature Communications, Nature, vol. 9(1), pages 1-21, December.
- Kost, James T. & McDermott, Michael P., 2002. "Combining dependent P-values," Statistics & Probability Letters, Elsevier, vol. 60(2), pages 183-190, November.
- Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
- Oliver M Crook & Aikaterini Geladaki & Daniel J H Nightingale & Owen L Vennard & Kathryn S Lilley & Laurent Gatto & Paul D W Kirk, 2020. "A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-21, November.
- L. A. Murray & X. Sheng & I. M. Cristea, 2018. "Orchestration of protein acetylation as a toggle for cellular defense and virus replication," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
- Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
- Geir-Arne Fuglstad & Daniel Simpson & Finn Lindgren & Håvard Rue, 2019. "Constructing Priors that Penalize the Complexity of Gaussian Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 445-452, January.
- Aikaterini Geladaki & Nina Kočevar Britovšek & Lisa M. Breckels & Tom S. Smith & Owen L. Vennard & Claire M. Mulvey & Oliver M. Crook & Laurent Gatto & Kathryn S. Lilley, 2019. "Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
- Andy Christoforou & Claire M. Mulvey & Lisa M. Breckels & Aikaterini Geladaki & Tracey Hurrell & Penelope C. Hayward & Thomas Naake & Laurent Gatto & Rosa Viner & Alfonso Martinez Arias & Kathryn S. L, 2016. "A draft map of the mouse pluripotent stem cell spatial proteome," Nature Communications, Nature, vol. 7(1), pages 1-12, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jordan Currie & Vyshnavi Manda & Sean K. Robinson & Celine Lai & Vertica Agnihotri & Veronica Hidalgo & R. W. Ludwig & Kai Zhang & Jay Pavelka & Zhao V. Wang & June-Wha Rhee & Maggie P. Y. Lam & Edwar, 2024. "Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Oliver M Crook & Aikaterini Geladaki & Daniel J H Nightingale & Owen L Vennard & Kathryn S Lilley & Laurent Gatto & Paul D W Kirk, 2020. "A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-21, November.
- Nicola M. Moloney & Konstantin Barylyuk & Eelco Tromer & Oliver M. Crook & Lisa M. Breckels & Kathryn S. Lilley & Ross F. Waller & Paula MacGregor, 2023. "Mapping diversity in African trypanosomes using high resolution spatial proteomics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
- Jordan Currie & Vyshnavi Manda & Sean K. Robinson & Celine Lai & Vertica Agnihotri & Veronica Hidalgo & R. W. Ludwig & Kai Zhang & Jay Pavelka & Zhao V. Wang & June-Wha Rhee & Maggie P. Y. Lam & Edwar, 2024. "Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Oliver M Crook & Claire M Mulvey & Paul D W Kirk & Kathryn S Lilley & Laurent Gatto, 2018. "A Bayesian mixture modelling approach for spatial proteomics," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-29, November.
- Ying Zhu & Kerem Can Akkaya & Julia Ruta & Nanako Yokoyama & Cong Wang & Max Ruwolt & Diogo Borges Lima & Martin Lehmann & Fan Liu, 2024. "Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Ana Martinez-Val & Dorte B. Bekker-Jensen & Sophia Steigerwald & Claire Koenig & Ole Østergaard & Adi Mehta & Trung Tran & Krzysztof Sikorski & Estefanía Torres-Vega & Ewa Kwasniewicz & Sólveig Hlín B, 2021. "Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
- Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
- Niko Hauzenberger & Florian Huber, 2020.
"Model instability in predictive exchange rate regressions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Working Papers in Economics 2018-8, University of Salzburg.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Paper Series 276, WU Vienna University of Economics and Business.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Papers wuwp276, Vienna University of Economics and Business, Department of Economics.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Papers 1811.08818, arXiv.org, revised Dec 2018.
- Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
- Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
- Julia P. Schessner & Vincent Albrecht & Alexandra K. Davies & Pavel Sinitcyn & Georg H. H. Borner, 2023. "Deep and fast label-free Dynamic Organellar Mapping," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
- Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
- Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
- Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
- Toryn L. J. Schafer & Christopher K. Wikle & Jay A. VonBank & Bart M. Ballard & Mitch D. Weegman, 2020. "A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 365-382, September.
- Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33570-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.