IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i1p123-136.html
   My bibliography  Save this article

Gaussian processes and limiting linear models

Author

Listed:
  • Gramacy, Robert B.
  • Lee, Herbert K.H.

Abstract

Gaussian processes retain the linear model either as a special case, or in the limit. We show how this relationship can be exploited when the data are at least partially linear. However from the perspective of the Bayesian posterior, the Gaussian processes which encode the linear model either have probability of nearly zero or are otherwise unattainable without the explicit construction of a prior with the limiting linear model in mind. We develop such a prior, and show that its practical benefits extend well beyond the computational and conceptual simplicity of the linear model. For example, linearity can be extracted on a per-dimension basis, or can be combined with treed partition models to yield a highly efficient nonstationary model. Our approach is demonstrated on synthetic and real datasets of varying linearity and dimensionality.

Suggested Citation

  • Gramacy, Robert B. & Lee, Herbert K.H., 2008. "Gaussian processes and limiting linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 123-136, September.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:123-136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00330-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    2. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    3. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    4. Gramacy, Robert B., 2007. "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
    2. Paulo, Rui & García-Donato, Gonzalo & Palomo, Jesús, 2012. "Calibration of computer models with multivariate output," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3959-3974.
    3. Chevalier, Clément & Picheny, Victor & Ginsbourger, David, 2014. "KrigInv: An efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1021-1034.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.
    2. Xiao, Qian & Xu, Hongquan, 2021. "A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    4. Picheny, Victor & Ginsbourger, David, 2014. "Noisy kriging-based optimization methods: A unified implementation within the DiceOptim package," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1035-1053.
    5. Lucija Muehlenbachs & Elisheba Spiller & Christopher Timmins, 2015. "The Housing Market Impacts of Shale Gas Development," American Economic Review, American Economic Association, vol. 105(12), pages 3633-3659, December.
    6. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Jianhong Shi & Qian Yang & Xiongya Li & Weixing Song, 2017. "Effects of measurement error on a class of single-index varying coefficient regression models," Computational Statistics, Springer, vol. 32(3), pages 977-1001, September.
    8. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    9. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    10. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    11. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    12. Villalonga, Belen, 2004. "Intangible resources, Tobin's q, and sustainability of performance differences," Journal of Economic Behavior & Organization, Elsevier, vol. 54(2), pages 205-230, June.
    13. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    14. Brockmeier, M., 1991. "Entwicklung und Aufhebung von Reinheitsgeboten im Nahrungsmittelbereich – Analyse und Bewertung," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 27.
    15. Miles M Finney, 2017. "Air Quality and the Development of Los Angeles," The Review of Regional Studies, Southern Regional Science Association, vol. 47(3), pages 271-288, Fall.
    16. Terri Menke, 1987. "Economic Welfare and Urban Amenities Across Race-Sex Groups," Urban Studies, Urban Studies Journal Limited, vol. 24(2), pages 151-161, April.
    17. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    18. Miller, Steve & Startz, Richard, 2019. "Feasible generalized least squares using support vector regression," Economics Letters, Elsevier, vol. 175(C), pages 28-31.
    19. Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    20. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:123-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.