My bibliography
Save this item
Unified LASSO Estimation by Least Squares Approximation
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zou, Changliang & Chen, Xin, 2012. "On the consistency of coordinate-independent sparse estimation with BIC," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 248-255.
- Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Kwon, Sunghoon & Choi, Hosik & Kim, Yongdai, 2011. "Quadratic approximation on SCAD penalized estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 421-428, January.
- Jessica Gronsbell & Jessica Minnier & Sheng Yu & Katherine Liao & Tianxi Cai, 2019. "Automated feature selection of predictors in electronic medical records data," Biometrics, The International Biometric Society, vol. 75(1), pages 268-277, March.
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Lee, Sangin & Kim, Yongdai & Kwon, Sunghoon, 2012. "Quadratic approximation for nonconvex penalized estimations with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1710-1717.
- Ruosha Li & Limin Peng, 2017. "Assessing quantile prediction with censored quantile regression models," Biometrics, The International Biometric Society, vol. 73(2), pages 517-528, June.
- Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
- Na You & Shun He & Xueqin Wang & Junxian Zhu & Heping Zhang, 2018. "Subtype classification and heterogeneous prognosis model construction in precision medicine," Biometrics, The International Biometric Society, vol. 74(3), pages 814-822, September.
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Wei Qian & Yuhong Yang, 2013. "Model selection via standard error adjusted adaptive lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 295-318, April.
- Ulrike Schneider & Martin Wagner, 2012.
"Catching Growth Determinants with the Adaptive Lasso,"
German Economic Review, Verein für Socialpolitik, vol. 13(1), pages 71-85, February.
- Schneider Ulrike & Wagner Martin, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, De Gruyter, vol. 13(1), pages 71-85, February.
- Schneider, Ulrike & Wagner, Martin, 2008. "Catching Growth Determinants with the Adaptive LASSO," Economics Series 232, Institute for Advanced Studies.
- Ulrike Schneider & Martin Wagner, 2009. "Catching Growth Determinants with the Adaptive Lasso," wiiw Working Papers 55, The Vienna Institute for International Economic Studies, wiiw.
- Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
- Dennis D. Boos & Leonard A. Stefanski & Yujun Wu, 2009. "Fast FSR Variable Selection with Applications to Clinical Trials," Biometrics, The International Biometric Society, vol. 65(3), pages 692-700, September.
- Zbonakova, Lenka & Härdle, Wolfgang Karl & Wang, Weining, 2016. "Time varying quantile Lasso," SFB 649 Discussion Papers 2016-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022.
"Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach,"
Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," IZA Discussion Papers 10961, Institute of Labor Economics (IZA).
- Michael Knaus & Michael Lechner & Anthony Strittmatter, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Papers 1709.10279, arXiv.org, revised May 2018.
- Lechner, Michael & Strittmatter, Anthony & Knaus, Michael C., 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," CEPR Discussion Papers 12224, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Economics Working Paper Series 1711, University of St. Gallen, School of Economics and Political Science.
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
- Zhangong Zhou & Rong Jiang & Weimin Qian, 2011. "Variable selection for additive partially linear models with measurement error," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 185-202, September.
- Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
- Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
- Liang Liang & Jue Hou & Hajime Uno & Kelly Cho & Yanyuan Ma & Tianxi Cai, 2022. "Semi-supervised approach to event time annotation using longitudinal electronic health records," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 428-491, July.
- Rand R. Wilcox, 2018. "Robust regression: an inferential method for determining which independent variables are most important," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 100-111, January.
- Peng Lai & Fangjian Wang & Tingyu Zhu & Qingzhao Zhang, 2021. "Model identification and selection for single-index varying-coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 457-480, June.
- Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
- Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
- Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
- Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
- Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2014. "Quantile regression and variable selection for the single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1565-1577, July.
- Kuangnan Fang & Xinyan Fan & Wei Lan & Bingquan Wang, 2019. "Nonparametric additive beta regression for fractional response with application to body fat data," Annals of Operations Research, Springer, vol. 276(1), pages 331-347, May.
- Leng, Chenlei & Li, Bo, 2010. "Least squares approximation with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 254-261, February.
- Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
- Stefano Maria IACUS & Alessandro DE GREGORIO, 2010.
"Adaptive LASSO-type estimation for ergodic diffusion processes,"
Departmental Working Papers
2010-13, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Alessandro De Gregorio & Stefano Iacus, 2010. "Adaptive LASSO-type estimation for ergodic diffusion processes," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1100, Universitá degli Studi di Milano.
- Sangahn Kim & Mehmet Turkoz & Myong K. Jeong & Elsayed A. Elsayed, 2024. "Monitoring of group-structured high-dimensional processes via sparse group LASSO," Annals of Operations Research, Springer, vol. 340(2), pages 891-911, September.
- Nguyen Hong Giang & Yu-Ren Wang & Tran Dinh Hieu & Nguyen Huu Ngu & Thanh-Tuan Dang, 2022. "Estimating Land-Use Change Using Machine Learning: A Case Study on Five Central Coastal Provinces of Vietnam," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
- Quynh Van Nong & Chi Tim Ng, 2021. "Clustering of subsample means based on pairwise L1 regularized empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 135-174, February.
- Arslan, Olcay, 2012. "Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1952-1965.
- Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
- repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Wei Wang & Shou‐En Lu & Jerry Q. Cheng & Minge Xie & John B. Kostis, 2022. "Multivariate survival analysis in big data: A divide‐and‐combine approach," Biometrics, The International Biometric Society, vol. 78(3), pages 852-866, September.
- Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
- Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Jianfeng Wei & Jian Yang & Xuewen Cheng & Jie Ding & Shengquan Li, 2023. "Adaptive Regression Analysis of Heterogeneous Data Streams via Models with Dynamic Effects," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
- Mao, Guangyu, 2015. "Model selection of M-estimation models using least squares approximation," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 238-243.
- Kwon, Sunghoon & Lee, Sangin & Kim, Yongdai, 2015. "Moderately clipped LASSO," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 53-67.
- Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
- Yixin Fang & Heng Lian & Hua Liang, 2018. "A generalized partially linear framework for variance functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1147-1175, October.
- Wenbin Lu & Lexin Li, 2011. "Sufficient Dimension Reduction for Censored Regressions," Biometrics, The International Biometric Society, vol. 67(2), pages 513-523, June.
- Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Chenlei Leng & Minh-Ngoc Tran & David Nott, 2014. "Bayesian adaptive Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 221-244, April.
- Guo, Chaohui & Lv, Jing & Wu, Jibo, 2021. "Composite quantile regression for ultra-high dimensional semiparametric model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
- Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2017. "Quantile regression and variable selection of single-index coefficient model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 761-789, August.
- Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
- Zhang Haixiang & Zheng Yinan & Yoon Grace & Zhang Zhou & Gao Tao & Joyce Brian & Zhang Wei & Schwartz Joel & Vokonas Pantel & Colicino Elena & Baccarelli Andrea & Hou Lifang & Liu Lei, 2017. "Regularized estimation in sparse high-dimensional multivariate regression, with application to a DNA methylation study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(3), pages 159-171, August.
- Zheng, Shurong, 2008. "Selection of components and degrees of smoothing via lasso in high dimensional nonparametric additive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 164-175, September.
- Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
- Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
- Wei, Baolei, 2022. "Sparse dynamical system identification with simultaneous structural parameters and initial condition estimation," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Antoniadis, Anestis & Fryzlewicz, Piotr & Letué, Frédérique, 2010. "The Dantzig selector in Cox's proportional hazards model," LSE Research Online Documents on Economics 30992, London School of Economics and Political Science, LSE Library.
- Yoshida, Wataru & Hirose, Kei, 2024. "Fast same-step forecast in SUTSE model and its theoretical properties," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Mallick, Himel & Yi, Nengjun, 2017. "Bayesian group bridge for bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 115-133.
- Li-Ping Zhu & Lin-Yi Qian & Jin-Guan Lin, 2011. "Variable selection in a class of single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1277-1293, December.
- Sophie Lambert-Lacroix & Laurent Zwald, 2016. "The adaptive BerHu penalty in robust regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 487-514, September.
- Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
- Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
- Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Anestis Antoniadis & Piotr Fryzlewicz & Frédérique Letué, 2010. "The Dantzig Selector in Cox's Proportional Hazards Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 531-552, December.
- Han, Xiaoyi & Peng, Bin & Yang, Yanrong & Zhu, Huanjun, 2021. "Shrinkage estimation of the varying-coefficient model with continuous and categorical covariates," Economics Letters, Elsevier, vol. 202(C).
- A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
- Xia, Xiaochao & Liu, Zhi & Yang, Hu, 2016. "Regularized estimation for the least absolute relative error models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 104-119.
- Yuanyuan Shen & Katherine P. Liao & Tianxi Cai, 2015. "Sparse kernel machine regression for ordinal outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 63-70, March.
- Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
- Li, Jianbo & Gu, Minggao, 2012. "Adaptive LASSO for general transformation models with right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2583-2597.
- Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
- Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
- Denis Agniel & Katherine P. Liao & Tianxi Cai, 2016. "Estimation and testing for multiple regulation of multivariate mixed outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1194-1205, December.
- Ramon I. Garcia & Joseph G. Ibrahim & Hongtu Zhu, 2010. "Variable Selection in the Cox Regression Model with Covariates Missing at Random," Biometrics, The International Biometric Society, vol. 66(1), pages 97-104, March.