IDEAS home Printed from https://ideas.repec.org/p/zbw/cauman/413.html
   My bibliography  Save this paper

Regeln für die Allokation eines Marketing-Budgets auf Produkte oder Marktsegmente

Author

Listed:
  • Albers, Sönke

Abstract

In der Literatur hat man das im Marketing bedeutende Problem der Verteilung einer knappen Ressource, von der eine Umsatzwirkung ausgeht, auf Produkte oder Marktsegmente dadurch zu lösen versucht, daß man die Parameter vorher spezifizierter Umsatzreaktionsfunktionen statistisch schätzt und dann das Optimum mit geeigneten Algorithmen bestimmt. Im Gegensatz dazu findet man in der Praxis vorwiegend einfache Allokationsregeln, z.B. Budgetverteilung proportional zum bisherigen oder geplanten Umsatz, deren Güte allerdings fraglich ist. In diesem Beitrag wird aus der Optimalitätsbedingung ohne Unterstellung spezifischer Funktionstypen eine Regel abgeleitet, nach der im Optimum die Deckungsbeiträge multipliziert mit den jeweiligen Elastizitäten gleich sein müssen. Mit Hilfe eines computergestützten Simulationsexperimentes ist für unterschiedliche Datensituationen die Güte der verschiedenen heuristischen Allokationsregeln untersucht worden. Die Ergebnisse zeigen, daß die hier vorgeschlagene und leicht implementierbare Allokationsregel bereits bei einmaliger Anwendung zu sehr guten Ergebnissen und nach wenigen Perioden zu fast-optimalen Lösungen führt sowie zum Optimum konvergiert. Alle anderen Allokationsregeln sind deutlich unterlegen und weisen keine Konvergenzeigenschaft auf. Abschließend wird gezeigt, wie die Regel modifiziert werden muß, wenn man die Prämissen voneinander unabhängiger Allokationseinheiten sowie statischer, symmetrischer und deterministischer Reaktionsfunktionen aufhebt.

Suggested Citation

  • Albers, Sönke, 1996. "Regeln für die Allokation eines Marketing-Budgets auf Produkte oder Marktsegmente," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 413, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  • Handle: RePEc:zbw:cauman:413
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/149044/1/manuskript_413.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pradeep K. Chintagunta, 1993. "Investigating the Sensitivity of Equilibrium Profits to Advertising Dynamics and Competitive Effects," Management Science, INFORMS, vol. 39(9), pages 1146-1162, September.
    2. Dennis H. Gensch & Ulf Peter Welam, 1973. "An Optimum Budget Allocation Model for Dynamic, Interacting Market Segments," Management Science, INFORMS, vol. 20(2), pages 179-190, October.
    3. Hanan Luss & Shiv K. Gupta, 1975. "Technical Note—Allocation of Effort Resources among Competing Activities," Operations Research, INFORMS, vol. 23(2), pages 360-366, April.
    4. Duncan M. Holthausen, Jr. & Gert Assmus, 1982. "Advertising Budget Allocation under Uncertainty," Management Science, INFORMS, vol. 28(5), pages 487-499, May.
    5. Peter Doyle & John Saunders, 1990. "Multiproduct Advertising Budgeting," Marketing Science, INFORMS, vol. 9(2), pages 97-113.
    6. Leonard M. Lodish & Ellen Curtis & Michael Ness & M. Kerry Simpson, 1988. "Sales Force Sizing and Deployment Using a Decision Calculus Model at Syntex Laboratories," Interfaces, INFORMS, vol. 18(1), pages 5-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Fischer & Sönke Albers & Nils Wagner & Monika Frie, 2011. "Practice Prize Winner --Dynamic Marketing Budget Allocation Across Countries, Products, and Marketing Activities," Marketing Science, INFORMS, vol. 30(4), pages 568-585, July.
    2. Hans Buhl & Martin Gneiser & Julia Heidemann, 2009. "Ein modelltheoretischer Ansatz zur Planung von Investitionen in Kundenbeziehungen," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(2), pages 175-195, October.
    3. Albers, Sönke, 1998. "Optimale Allokation von Hochschul-Budgets," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 473, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Gahler, Daniel & Hruschka, Harald, 2016. "Resource Allocation Heuristics for Unknown Sales Response Functions with Additive Disturbances," University of Regensburg Working Papers in Business, Economics and Management Information Systems 488, University of Regensburg, Department of Economics.
    5. Uwe Götze & Constanze Linke, 2008. "Interne Unternehmensrechnung als Instrument des marktorientierten Zielkostenmanagements – ausgewählte Probleme und Lösungsansätze," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 19(1), pages 107-132, May.
    6. Wolfgang Polasek, 2011. "Marketing Response Models for Shrinking Beer Sales in Germany," Working Paper series 50_11, Rimini Centre for Economic Analysis.
    7. Cathérine Grisar & Matthias Meyer, 2016. "Use of simulation in controlling research: a systematic literature review for German-speaking countries," Management Review Quarterly, Springer, vol. 66(2), pages 117-157, April.
    8. Manfred Krafft & Sönke Albers, 2000. "Ansätze zur Segmentierung von Kunden — Wie geeignet sind herkömmliche Konzepte?," Schmalenbach Journal of Business Research, Springer, vol. 52(6), pages 515-536, September.
    9. Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre (Ed.), 1999. "Jahresbericht 1998," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 495, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Bernd W. Wirtz & Torsten Olderog & Joachim Schwarz, 2003. "Strategische Erfolgsfaktoren in der Internetökonomie," Schmalenbach Journal of Business Research, Springer, vol. 55(1), pages 60-77, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    2. Marc Fischer & Sönke Albers & Nils Wagner & Monika Frie, 2011. "Practice Prize Winner --Dynamic Marketing Budget Allocation Across Countries, Products, and Marketing Activities," Marketing Science, INFORMS, vol. 30(4), pages 568-585, July.
    3. Karray, Salma & Martín-Herrán, Guiomar, 2009. "A dynamic model for advertising and pricing competition between national and store brands," European Journal of Operational Research, Elsevier, vol. 193(2), pages 451-467, March.
    4. Prabhakant Sinha & Andris A. Zoltners, 2001. "Sales-Force Decision Models: Insights from 25 Years of Implementation," Interfaces, INFORMS, vol. 31(3_supplem), pages 8-44, June.
    5. Mesak, Hani I., 1999. "On the generalizability of advertising pulsation monopoly results to an oligopoly," European Journal of Operational Research, Elsevier, vol. 117(3), pages 429-449, September.
    6. Karray Salma & Martín-Herrán Guiomar, 2008. "Investigating the Relationship Between Advertising and Pricing in a Channel with Private Label Offering: A Theoretic Model," Review of Marketing Science, De Gruyter, vol. 6(1), pages 1-39, August.
    7. Yanwu Yang & Baozhu Feng & Joni Salminen & Bernard J. Jansen, 2022. "Optimal advertising for a generalized Vidale–Wolfe response model," Electronic Commerce Research, Springer, vol. 22(4), pages 1275-1305, December.
    8. Bielecki, Andre & Albers, Sönke & Mantrala, Murali, 2012. "Salesperson Efficiency Benchmarking Using Sales Response Data: Who is Working Hard and Working Smart?," EconStor Preprints 57427, ZBW - Leibniz Information Centre for Economics.
    9. Beltran-Royo, C. & Zhang, H. & Blanco, L.A. & Almagro, J., 2013. "Multistage multiproduct advertising budgeting," European Journal of Operational Research, Elsevier, vol. 225(1), pages 179-188.
    10. Karen Gedenk & Henrik Sattler, 1997. "Preisschwellen und Deckungsbeitrag - Verschenkt der Handel große Potentiale?," Working Paper Series A 1997-04, Friedrich Schiller University of Jena, School of of Economics and Business Administration.
    11. Yong-Wu Zhou & Chuanying Chen & Yuanguang Zhong & Bin Cao, 2020. "The allocation optimization of promotion budget and traffic volume for an online flash-sales platform," Annals of Operations Research, Springer, vol. 291(1), pages 1183-1207, August.
    12. Nair, Anand & Narasimhan, Ram, 2006. "Dynamics of competing with quality- and advertising-based goodwill," European Journal of Operational Research, Elsevier, vol. 175(1), pages 462-474, November.
    13. Drexl, Andreas & Haase, Knut, 1996. "Fast approximation methods for sales force deployment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 411, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Karen Gedenk & Henrik Sattler, 1999. "Preisschwellen und Deckungsbeitrag — Verschenkt der Handel gro Potentiale?," Schmalenbach Journal of Business Research, Springer, vol. 51(1), pages 33-59, January.
    15. Foroudi, Pantea & Melewar, T.C. & Gupta, Suraksha, 2014. "Linking corporate logo, corporate image, and reputation: An examination of consumer perceptions in the financial setting," Journal of Business Research, Elsevier, vol. 67(11), pages 2269-2281.
    16. Andreas Klein, 2011. "Die Entwicklung eines agentenbasierten Basismodells zur Bestimmung der deckungsbeitragsmaximierenden Anzahl von Außendienstmitarbeitern," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(2), pages 189-210, January.
    17. Edlira Shehu & Tim Prostka & Christina Schmidt-Stölting & Michel Clement & Eva Blömeke, 2014. "The influence of book advertising on sales in the German fiction book market," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 38(2), pages 109-130, May.
    18. Haofeng Jin & Zhentong Lu, 2021. "Measuring the Effectiveness of Salespeople: Evidence from a Cold-Drink Market," Staff Working Papers 21-40, Bank of Canada.
    19. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    20. AgralI, Semra & Geunes, Joseph, 2009. "Solving knapsack problems with S-curve return functions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 605-615, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauman:413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ibkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.