IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v291y2020i1d10.1007_s10479-018-3065-y.html
   My bibliography  Save this article

The allocation optimization of promotion budget and traffic volume for an online flash-sales platform

Author

Listed:
  • Yong-Wu Zhou

    (South China University of Technology)

  • Chuanying Chen

    (South China University of Technology)

  • Yuanguang Zhong

    (South China University of Technology
    The Hong Kong Polytechnic University)

  • Bin Cao

    (South China University of Technology)

Abstract

This paper discusses an allocation issue of promotion budget and traffic volume, faced by VIP.com that is the largest online flash-sales platform in China. Through flash sales mode, each day VIP.com provides consumers one hundred authorized brands of products on consignment, which last for a short period of time (frequently 3–5 days), called by VIP.com ‘Dangqi’. As a consignee, VIP.com has no pricing rights of products but can allocate the promotion budget and traffic volume to each brand. Due to different categories of products and different brands of products having different responses to the same promotion budget and different profit margins, it is very necessary for VIP.com to allocate promotion budget and traffic volume among all brands of products offered in each ‘Dangqi’ reasonably in order to improve the usage efficiency of limited resources. Based on the real historical data of VIP.com, we first find main elements that influence the sales revenues of different brands of products through machine learning. We then predict the sales of all brands of products in each ‘Dangqi’ by multiplicative regression model, which has better accuracy of forecasting than other forecast models and obtain the function relationship between the total sales of each brand and its main impact elements. Finally, considering VIP.com’s actual concerns, we develop allocation optimization models with objectives of maximizing VIP.com’s total sales and total sales profit, respectively. The results from VIP.com’s real data tests show that under the same resource investment the presented allocation optimization approach can yield a significant increase in VIP.com’s total sales and sales profit in each ‘Dangqi’.

Suggested Citation

  • Yong-Wu Zhou & Chuanying Chen & Yuanguang Zhong & Bin Cao, 2020. "The allocation optimization of promotion budget and traffic volume for an online flash-sales platform," Annals of Operations Research, Springer, vol. 291(1), pages 1183-1207, August.
  • Handle: RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-018-3065-y
    DOI: 10.1007/s10479-018-3065-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3065-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3065-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berger, Paul D. & Bechwati, Nada Nasr, 2001. "The allocation of promotion budget to maximize customer equity," Omega, Elsevier, vol. 29(1), pages 49-61, February.
    2. Yanwu Yang & Daniel Zeng & Yinghui Yang & Jie Zhang, 2015. "Optimal Budget Allocation Across Search Advertising Markets," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 285-300, May.
    3. Mustafa Akpinar & Nejat Yumusak, 2016. "Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods," Energies, MDPI, vol. 9(9), pages 1-17, September.
    4. Kavaklioglu, Kadir, 2011. "Modeling and prediction of Turkey's electricity consumption using Support Vector Regression," Applied Energy, Elsevier, vol. 88(1), pages 368-375, January.
    5. Erik Brynjolfsson & Kristina McElheran, 2016. "The Rapid Adoption of Data-Driven Decision-Making," American Economic Review, American Economic Association, vol. 106(5), pages 133-139, May.
    6. Thierry Delahaye & Rodrigo Acuna-Agost & Nicolas Bondoux & Anh-Quan Nguyen & Mourad Boudia, 2017. "Data-driven models for itinerary preferences of air travelers and application for dynamic pricing optimization," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(6), pages 621-639, December.
    7. Izadyar, Nima & Ghadamian, Hossein & Ong, Hwai Chyuan & moghadam, Zeinab & Tong, Chong Wen & Shamshirband, Shahaboddin, 2015. "Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption," Energy, Elsevier, vol. 93(P2), pages 1558-1567.
    8. Md Mahmudul Haque & Amaury Souza & Ataur Rahman, 2017. "Water Demand Modelling Using Independent Component Regression Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 299-312, January.
    9. Huiyuan Fan & Prashant K. Tarun & Victoria C. P. Chen & Dachuan T. Shih & Jay M. Rosenberger & Seoung Bum Kim & Robert A. Horton, 2018. "Data-driven optimization for Dallas Fort Worth International Airport deicing activities," Annals of Operations Research, Springer, vol. 263(1), pages 361-384, April.
    10. Peter Jacko, 2016. "Resource capacity allocation to stochastic dynamic competitors: knapsack problem for perishable items and index-knapsack heuristic," Annals of Operations Research, Springer, vol. 241(1), pages 83-107, June.
    11. Duncan M. Holthausen, Jr. & Gert Assmus, 1982. "Advertising Budget Allocation under Uncertainty," Management Science, INFORMS, vol. 28(5), pages 487-499, May.
    12. Youngseok Choi & Habin Lee & Zahir Irani, 2018. "Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector," Annals of Operations Research, Springer, vol. 270(1), pages 75-104, November.
    13. Woonghee Tim Huh & Retsef Levi & Paat Rusmevichientong & James B. Orlin, 2011. "Adaptive Data-Driven Inventory Control with Censored Demand Based on Kaplan-Meier Estimator," Operations Research, INFORMS, vol. 59(4), pages 929-941, August.
    14. Nasim Nasrabadi & Akram Dehnokhalaji & Narsis Kiani & Pekka Korhonen & Jyrki Wallenius, 2012. "Resource allocation for performance improvement," Annals of Operations Research, Springer, vol. 196(1), pages 459-468, July.
    15. Qing Cao & Mark Parry & Karyl Leggio, 2011. "The three-factor model and artificial neural networks: predicting stock price movement in China," Annals of Operations Research, Springer, vol. 185(1), pages 25-44, May.
    16. Louviere, Jordan J & Hensher, David A, 1983. "Using Discrete Choice Models with Experimental Design Data to Forecast Consumer Demand for a Unique Cultural Event," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(3), pages 348-361, December.
    17. Kris Johnson Ferreira & Bin Hong Alex Lee & David Simchi-Levi, 2016. "Analytics for an Online Retailer: Demand Forecasting and Price Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 69-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
    2. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    3. Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
    4. Song, Jiancai & Zhang, Liyi & Jiang, Qingling & Ma, Yunpeng & Zhang, Xinxin & Xue, Guixiang & Shen, Xingliang & Wu, Xiangdong, 2022. "Estimate the daily consumption of natural gas in district heating system based on a hybrid seasonal decomposition and temporal convolutional network model," Applied Energy, Elsevier, vol. 309(C).
    5. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    6. Chang, Shuhua & Zhang, Zhaowei & Wang, Xinyu & Dong, Yan, 2020. "Optimal acquisition and retention strategies in a duopoly model of competition," European Journal of Operational Research, Elsevier, vol. 282(2), pages 677-695.
    7. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    8. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
    9. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
    10. Hamidreza Koosha & Amir Albadvi, 2020. "Allocation of marketing budgets to maximize customer equity," Operational Research, Springer, vol. 20(2), pages 561-583, June.
    11. Saravanan Kesavan & Tarun Kushwaha, 2020. "Field Experiment on the Profit Implications of Merchants’ Discretionary Power to Override Data-Driven Decision-Making Tools," Management Science, INFORMS, vol. 66(11), pages 5182-5190, November.
    12. Satya S. Malladi & Alan L. Erera & Chelsea C. White, 2023. "Inventory control with modulated demand and a partially observed modulation process," Annals of Operations Research, Springer, vol. 321(1), pages 343-369, February.
    13. Yanwu Yang & Baozhu Feng & Joni Salminen & Bernard J. Jansen, 2022. "Optimal advertising for a generalized Vidale–Wolfe response model," Electronic Commerce Research, Springer, vol. 22(4), pages 1275-1305, December.
    14. Tin Cheuk Leung, 2013. "What Is the True Loss Due to Piracy? Evidence from Microsoft Office in Hong Kong," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 1018-1029, July.
    15. Labro, Eva & Lang, Mark & Omartian, James D., 2023. "Predictive analytics and centralization of authority," Journal of Accounting and Economics, Elsevier, vol. 75(1).
    16. Wang, Deshen & Chen, Bintong & Chen, Jing, 2019. "Credit card fraud detection strategies with consumer incentives," Omega, Elsevier, vol. 88(C), pages 179-195.
    17. Amaresh K Tiwari, 2023. "Automation In An Open, Catching-Up Economy: Aggregate And Microeconometric Evidence," University of Tartu - Faculty of Economics and Business Administration Working Paper Series 144, Faculty of Economics and Business Administration, University of Tartu (Estonia).
    18. Constant Berkhout & Abhi Bhattacharya & Carlos Bauer & Ross W. Johnson, 2024. "Revisiting the construct of data-driven decision making: antecedents, scope, and boundaries," SN Business & Economics, Springer, vol. 4(10), pages 1-23, October.
    19. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    20. Boylan, John E. & Babai, M. Zied, 2022. "Estimating the cumulative distribution function of lead-time demand using bootstrapping with and without replacement," International Journal of Production Economics, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-018-3065-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.