IDEAS home Printed from https://ideas.repec.org/p/zbw/caseps/200430.html
   My bibliography  Save this paper

Recursive Partitioning and Tree-based Methods

Author

Listed:
  • Zhang, Heping

Abstract

Tree-based methods have become one of the most flexible, intuitive, and powerful data analytic tools for exploring complex data structures. The applicationsof these methods are far reaching. They include financial firms (credit cards: Altman, 2002; Frydman et al., 2002, and investments: Pace, 1995; Brennan et al., 2001), manufacturing and marketing companies (Levin et al., 1995), and pharmaceutical companies. The best documented, and arguably most popular uses of tree-based methods are in biomedical research for which classification is a central issue. For example, a clinician or health scientist may be very interested in the following question (Goldman et al., 1996, 1982; Zhang et al., 2001): Is this patient with chest pain suffering a heart attack, or does he simply have a strained muscle? To answer this question, information on this patient must be collected, and a good diagnostic test utilizing such information must be in place. Tree-based methods provide one solution for constructing the diagnostic test.

Suggested Citation

  • Zhang, Heping, 2004. "Recursive Partitioning and Tree-based Methods," Papers 2004,30, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
  • Handle: RePEc:zbw:caseps:200430
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22203/1/30_hz.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordon, Louis & Olshen, Richard A., 1980. "Consistent nonparametric regression from recursive partitioning schemes," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 611-627, December.
    2. Levin, Nissan & Zahavi, Jacob & Olitsky, Morris, 1995. "AMOS -- A probability-driven, customer-oriented decision support system for target marketing of solo mailings," European Journal of Operational Research, Elsevier, vol. 87(3), pages 708-721, December.
    3. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    4. Pace, R Kelley, 1995. "Parametric, Semiparametric, and Nonparametric Estimation of Characteristic Values within Mass Assessment and Hedonic Pricing Models," The Journal of Real Estate Finance and Economics, Springer, vol. 11(3), pages 195-217, November.
    5. Gordon, Louis & Olshen, Richard A., 1984. "Almost surely consistent nonparametric regression from recursive partitioning schemes," Journal of Multivariate Analysis, Elsevier, vol. 15(2), pages 147-163, October.
    6. Ciampi, Antonio & Thiffault, Johanne & Nakache, Jean-Pierre & Asselain, Bernard, 1986. "Stratification by stepwise regression, correspondence analysis and recursive partition: a comparison of three methods of analysis for survival data with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 4(3), pages 185-204, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Jin & Ying Lu & Kaite Stone & Dennis M. Black, 2004. "Alternative Tree-Structured Survival Analysis Based on Variance of Survival Time," Medical Decision Making, , vol. 24(6), pages 670-680, November.
    2. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    3. repec:asg:wpaper:1006 is not listed on IDEAS
    4. Xiaogang Su & Juanjuan Fan, 2004. "Multivariate Survival Trees: A Maximum Likelihood Approach Based on Frailty Models," Biometrics, The International Biometric Society, vol. 60(1), pages 93-99, March.
    5. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    6. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    7. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    8. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    9. Timothy Tyler Brown & Juan Pablo Atal, 2019. "How robust are reference pricing studies on outpatient medical procedures? Three different preprocessing techniques applied to difference‐in differences," Health Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 280-298, February.
    10. L. Sun & M. K. Clayton, 2008. "Bayesian Analysis of Crossclassified Spatial Data with Autocorrelation," Biometrics, The International Biometric Society, vol. 64(1), pages 74-84, March.
    11. Stuart R. Lipsitz & Garrett M. Fitzmaurice & Joseph G. Ibrahim & Debajyoti Sinha & Michael Parzen & Steven Lipshultz, 2009. "Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: an application to acquired immune deficiency syndrome data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 3-20, January.
    12. Un Jung Lee & ShengLi Tzeng & Yu-Chuan Chen & James J Chen, 2017. "Development of Predictive Signatures for Treatment Selection in Precision Medicine," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 2(4), pages 83-88, August.
    13. Rakesh Niraj & V. Padmanabhan & P. B. Seetharaman, 2008. "Research Note—A Cross-Category Model of Households' Incidence and Quantity Decisions," Marketing Science, INFORMS, vol. 27(2), pages 225-235, 03-04.
    14. Lu Lin & Feng Li, 2008. "Stable and bias-corrected estimation for nonparametric regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(4), pages 283-303.
    15. Biau, Gérard & Devroye, Luc & Dujmović, Vida & Krzyżak, Adam, 2012. "An affine invariant k-nearest neighbor regression estimate," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 24-34.
    16. Gábor Lugosi & Andrew B. Nobel, 1998. "Adaptive model selection using empirical complexities," Economics Working Papers 323, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Abhinandan Dalal & Patrick Blobaum & Shiva Kasiviswanathan & Aaditya Ramdas, 2024. "Anytime-Valid Inference for Double/Debiased Machine Learning of Causal Parameters," Papers 2408.09598, arXiv.org, revised Sep 2024.
    18. Yan Zhou & John McArdle, 2015. "Rationale and Applications of Survival Tree and Survival Ensemble Methods," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 811-833, September.
    19. Luss, Hanan & Rosenwein, Moshe B., 1997. "Operations Research applications: Opportunities and accomplishments," European Journal of Operational Research, Elsevier, vol. 97(2), pages 220-244, March.
    20. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    21. Luiz Moutinho & Paulo Rita & Shuliang Li, 2006. "Strategic diagnostics and management decision making: a hybrid knowledge‐based approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 14(3), pages 129-155, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:caseps:200430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/cahubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.