IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v24y2004i6p670-680.html
   My bibliography  Save this article

Alternative Tree-Structured Survival Analysis Based on Variance of Survival Time

Author

Listed:
  • Hua Jin

    (Department of Radiology, the University of California at San Francisco and the Department of Mathematics, South China Normal University, Guangzhou, China)

  • Ying Lu

    (Department of Radiology and the Department of Epidemiology and Biostatistics, the University of California at San Francisco)

  • Kaite Stone

    (Department of Epidemiology and Biostatistics, the University of California at San Francisco)

  • Dennis M. Black

    (Department of Epidemiology and Biostatistics, the University of California at San Francisco)

Abstract

Tree-structured survival analysis (TSSA) is a popular alternative to the Cox proportional hazards regression in medical research of survival data. Several methods for constructing a tree of different survival profiles have been developed, including TSSA based on log-rank statistics, martingale residuals , L p Wasserstein metrics between Kaplan-Meier survival curves, and a method based on a weighted average of the within-node impurity of the death indicator and the within-node loss function of follow-up times. Lu and others used variance of restricted mean lifetimes as an index of degree of separation (DOS) to measure the efficiency in separations of survival profiles by a classification method. Like tree-based regression analysis that uses variance as a criterion for node partition and pruning, the variance of restricted mean lifetimes between different groups can be an alternative index to log-rank test statistics in construction of survival trees. In this article, the authors explore the use of DOS in TSSA. They propose an algorithm similar to the least square regression tree for survival analysis based on the variance of the restricted mean lifetimes. They apply the proposed method to prospective cohort data from the Study of Osteoporotic Fracture that motivated the research and then compare their classification rule to those rules based on the conventional TSSA mentioned above. A limited simulation study suggests that the proposed algorithm is a competitive alternative to the log-rank or martingale residual-based TSSA approaches.

Suggested Citation

  • Hua Jin & Ying Lu & Kaite Stone & Dennis M. Black, 2004. "Alternative Tree-Structured Survival Analysis Based on Variance of Survival Time," Medical Decision Making, , vol. 24(6), pages 670-680, November.
  • Handle: RePEc:sae:medema:v:24:y:2004:i:6:p:670-680
    DOI: 10.1177/0272989X04271048
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X04271048
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X04271048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gordon, Louis & Olshen, Richard A., 1984. "Almost surely consistent nonparametric regression from recursive partitioning schemes," Journal of Multivariate Analysis, Elsevier, vol. 15(2), pages 147-163, October.
    2. Ciampi, Antonio & Thiffault, Johanne & Nakache, Jean-Pierre & Asselain, Bernard, 1986. "Stratification by stepwise regression, correspondence analysis and recursive partition: a comparison of three methods of analysis for survival data with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 4(3), pages 185-204, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Heping, 2004. "Recursive Partitioning and Tree-based Methods," Papers 2004,30, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    2. Yan Zhou & John McArdle, 2015. "Rationale and Applications of Survival Tree and Survival Ensemble Methods," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 811-833, September.
    3. Besse, Philippe & Leconte, Eve & Walschaerts, Marie, 2012. "Stable variable selection for right censored data: comparison of methods," TSE Working Papers 12-486, Toulouse School of Economics (TSE).
    4. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    5. Hoora Moradian & Denis Larocque & François Bellavance, 2017. "$$L_1$$ L 1 splitting rules in survival forests," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 671-691, October.
    6. A. S. Foulkes & V. De Gruttola, 2002. "Characterizing the Relationship Between HIV-1 Genotype and Phenotype: Prediction-Based Classification," Biometrics, The International Biometric Society, vol. 58(1), pages 145-156, March.
    7. Fan, Juanjuan & Nunn, Martha E. & Su, Xiaogang, 2009. "Multivariate exponential survival trees and their application to tooth prognosis," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1110-1121, February.
    8. Ana Ezquerro & Brais Cancela & Ana López-Cheda, 2023. "On the Reliability of Machine Learning Models for Survival Analysis When Cure Is a Possibility," Mathematics, MDPI, vol. 11(19), pages 1-21, October.
    9. Yifei Sun & Sy Han Chiou & Mei‐Cheng Wang, 2020. "ROC‐guided survival trees and ensembles," Biometrics, The International Biometric Society, vol. 76(4), pages 1177-1189, December.
    10. Karen Lostritto & Robert L. Strawderman & Annette M. Molinaro, 2012. "A Partitioning Deletion/Substitution/Addition Algorithm for Creating Survival Risk Groups," Biometrics, The International Biometric Society, vol. 68(4), pages 1146-1156, December.
    11. Hua Jin & Ying Lu, 2011. "Cost-Saving Tree-Structured Survival Analysis for Hip Fracture of Study of Osteoporotic Fractures Data," Medical Decision Making, , vol. 31(2), pages 299-307, March.
    12. Guangyu Wu & Anders Lindquist, 2024. "A non-classical parameterization for density estimation using sample moments," Statistical Papers, Springer, vol. 65(7), pages 4489-4513, September.
    13. Xiaogang Su & Juanjuan Fan, 2004. "Multivariate Survival Trees: A Maximum Likelihood Approach Based on Frailty Models," Biometrics, The International Biometric Society, vol. 60(1), pages 93-99, March.
    14. Un Jung Lee & ShengLi Tzeng & Yu-Chuan Chen & James J Chen, 2017. "Development of Predictive Signatures for Treatment Selection in Precision Medicine," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 2(4), pages 83-88, August.
    15. Gábor Lugosi & Andrew B. Nobel, 1998. "Adaptive model selection using empirical complexities," Economics Working Papers 323, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Abhinandan Dalal & Patrick Blobaum & Shiva Kasiviswanathan & Aaditya Ramdas, 2024. "Anytime-Valid Inference for Double/Debiased Machine Learning of Causal Parameters," Papers 2408.09598, arXiv.org, revised Sep 2024.
    17. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    18. Rancoita, Paola M.V. & Zaffalon, Marco & Zucca, Emanuele & Bertoni, Francesco & de Campos, Cassio P., 2016. "Bayesian network data imputation with application to survival tree analysis," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 373-387.
    19. Bilton, Penny & Jones, Geoff & Ganesh, Siva & Haslett, Steve, 2017. "Classification trees for poverty mapping," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 53-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:24:y:2004:i:6:p:670-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.