IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v4y1986i3p185-204.html
   My bibliography  Save this article

Stratification by stepwise regression, correspondence analysis and recursive partition: a comparison of three methods of analysis for survival data with covariates

Author

Listed:
  • Ciampi, Antonio
  • Thiffault, Johanne
  • Nakache, Jean-Pierre
  • Asselain, Bernard

Abstract

No abstract is available for this item.

Suggested Citation

  • Ciampi, Antonio & Thiffault, Johanne & Nakache, Jean-Pierre & Asselain, Bernard, 1986. "Stratification by stepwise regression, correspondence analysis and recursive partition: a comparison of three methods of analysis for survival data with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 4(3), pages 185-204, October.
  • Handle: RePEc:eee:csdana:v:4:y:1986:i:3:p:185-204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-9473(86)90033-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua Jin & Ying Lu & Kaite Stone & Dennis M. Black, 2004. "Alternative Tree-Structured Survival Analysis Based on Variance of Survival Time," Medical Decision Making, , vol. 24(6), pages 670-680, November.
    2. Zhang, Heping, 2004. "Recursive Partitioning and Tree-based Methods," Papers 2004,30, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    3. Hoora Moradian & Denis Larocque & François Bellavance, 2017. "$$L_1$$ L 1 splitting rules in survival forests," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 671-691, October.
    4. Yan Zhou & John McArdle, 2015. "Rationale and Applications of Survival Tree and Survival Ensemble Methods," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 811-833, September.
    5. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    6. Yifei Sun & Sy Han Chiou & Mei‐Cheng Wang, 2020. "ROC‐guided survival trees and ensembles," Biometrics, The International Biometric Society, vol. 76(4), pages 1177-1189, December.
    7. Fan, Juanjuan & Nunn, Martha E. & Su, Xiaogang, 2009. "Multivariate exponential survival trees and their application to tooth prognosis," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1110-1121, February.
    8. Besse, Philippe & Leconte, Eve & Walschaerts, Marie, 2012. "Stable variable selection for right censored data: comparison of methods," TSE Working Papers 12-486, Toulouse School of Economics (TSE).
    9. Xiaogang Su & Juanjuan Fan, 2004. "Multivariate Survival Trees: A Maximum Likelihood Approach Based on Frailty Models," Biometrics, The International Biometric Society, vol. 60(1), pages 93-99, March.
    10. Karen Lostritto & Robert L. Strawderman & Annette M. Molinaro, 2012. "A Partitioning Deletion/Substitution/Addition Algorithm for Creating Survival Risk Groups," Biometrics, The International Biometric Society, vol. 68(4), pages 1146-1156, December.
    11. A. S. Foulkes & V. De Gruttola, 2002. "Characterizing the Relationship Between HIV-1 Genotype and Phenotype: Prediction-Based Classification," Biometrics, The International Biometric Society, vol. 58(1), pages 145-156, March.
    12. Hua Jin & Ying Lu, 2011. "Cost-Saving Tree-Structured Survival Analysis for Hip Fracture of Study of Osteoporotic Fractures Data," Medical Decision Making, , vol. 31(2), pages 299-307, March.
    13. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    14. Un Jung Lee & ShengLi Tzeng & Yu-Chuan Chen & James J Chen, 2017. "Development of Predictive Signatures for Treatment Selection in Precision Medicine," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 2(4), pages 83-88, August.
    15. Rancoita, Paola M.V. & Zaffalon, Marco & Zucca, Emanuele & Bertoni, Francesco & de Campos, Cassio P., 2016. "Bayesian network data imputation with application to survival tree analysis," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 373-387.
    16. Ana Ezquerro & Brais Cancela & Ana López-Cheda, 2023. "On the Reliability of Machine Learning Models for Survival Analysis When Cure Is a Possibility," Mathematics, MDPI, vol. 11(19), pages 1-21, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:4:y:1986:i:3:p:185-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.