IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v112y2012icp24-34.html
   My bibliography  Save this article

An affine invariant k-nearest neighbor regression estimate

Author

Listed:
  • Biau, Gérard
  • Devroye, Luc
  • Dujmović, Vida
  • Krzyżak, Adam

Abstract

We design a data-dependent metric in Rd and use it to define the k-nearest neighbors of a given point. Our metric is invariant under all affine transformations. We show that, with this metric, the standard k-nearest neighbor regression estimate is asymptotically consistent under the usual conditions on k, and minimal requirements on the input data.

Suggested Citation

  • Biau, Gérard & Devroye, Luc & Dujmović, Vida & Krzyżak, Adam, 2012. "An affine invariant k-nearest neighbor regression estimate," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 24-34.
  • Handle: RePEc:eee:jmvana:v:112:y:2012:i:c:p:24-34
    DOI: 10.1016/j.jmva.2012.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biau, Gérard & Devroye, Luc, 2010. "On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2499-2518, November.
    2. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    3. Davy Paindaveine & Germain Van Bever, 2012. "Nonparametrically Consistent Depth-Based Classifiers," Working Papers ECARES ECARES 2012-014, ULB -- Universite Libre de Bruxelles.
    4. Devroye, Luc & Krzyzak, Adam, 2002. "New Multivariate Product Density Estimators," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 88-110, July.
    5. Ollila E. & Oja H. & Koivunen V., 2003. "Estimates of Regression Coefficients Based on Lift Rank Covariance Matrix," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 90-98, January.
    6. Gordon, Louis & Olshen, Richard A., 1980. "Consistent nonparametric regression from recursive partitioning schemes," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 611-627, December.
    7. Hannu Oja, 1999. "Affine Invariant Multivariate Sign and Rank Tests and Corresponding Estimates: a Review," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 319-343, September.
    8. Esa Ollila & Hannu Oja & Thomas P. Hettmansperger, 2002. "Estimates of regression coefficients based on the sign covariance matrix," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 447-466, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asmae Chakir & Mohamed Tabaa, 2024. "Hybrid Renewable Production Scheduling for a PV–Wind-EV-Battery Architecture Using Sequential Quadratic Programming and Long Short-Term Memory–K-Nearest Neighbors Learning for Smart Buildings," Sustainability, MDPI, vol. 16(5), pages 1-24, March.
    2. Vicente García & J. Salvador Sánchez & Luis Alberto Rodríguez-Picón & Luis Carlos Méndez-González & Humberto de Jesús Ochoa-Domínguez, 2019. "Using regression models for predicting the product quality in a tubing extrusion process," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2535-2544, August.
    3. Ebner, Bruno & Henze, Norbert & Yukich, Joseph E., 2018. "Multivariate goodness-of-fit on flat and curved spaces via nearest neighbor distances," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 231-242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    2. Ella Roelant & Stefan Van Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    3. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    4. Nadar, M. & Hettmansperger, T. P. & Oja, H., 2003. "The asymptotic covariance matrix of the Oja median," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 431-442, October.
    5. Jin Wang & Weihua Zhou, 2015. "Effect of kurtosis on efficiency of some multivariate medians," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 331-348, September.
    6. Ollila, Esa & Oja, Hannu & Croux, Christophe, 2003. "The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 328-355, November.
    7. Agulló, Jose & Croux, Christophe & Van Aelst, Stefan, 2008. "The multivariate least-trimmed squares estimator," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 311-338, March.
    8. Ella Roelant & Stefan Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    9. Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.
    10. G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
    11. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    12. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    13. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    14. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    15. repec:jss:jstsof:43:i05 is not listed on IDEAS
    16. Lu Lin & Feng Li, 2008. "Stable and bias-corrected estimation for nonparametric regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(4), pages 283-303.
    17. Frahm, Gabriel & Jaekel, Uwe, 2010. "A generalization of Tyler's M-estimators to the case of incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 374-393, February.
    18. Tsai, Ming-Tien, 2009. "Asymptotically efficient two-sample rank tests for modal directions on spheres," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 445-458, March.
    19. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    20. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    21. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:112:y:2012:i:c:p:24-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.