Anytime-Valid Inference for Double/Debiased Machine Learning of Causal Parameters
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rubin Daniel & van der Laan Mark J., 2007. "A Doubly Robust Censoring Unbiased Transformation," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-21, March.
- Oliver Hines & Oliver Dukes & Karla Diaz-Ordaz & Stijn Vansteelandt, 2022. "Demystifying Statistical Learning Based on Efficient Influence Functions," The American Statistician, Taylor & Francis Journals, vol. 76(3), pages 292-304, July.
- Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
- Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
- Turner, Rosanne J. & Grünwald, Peter D., 2023. "Exact anytime-valid confidence intervals for contingency tables and beyond," Statistics & Probability Letters, Elsevier, vol. 198(C).
- Gordon, Louis & Olshen, Richard A., 1984. "Almost surely consistent nonparametric regression from recursive partitioning schemes," Journal of Multivariate Analysis, Elsevier, vol. 15(2), pages 147-163, October.
- Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Jing Cheng & Dylan S. Small & Zhiqiang Tan & Thomas R. Ten Have, 2009. "Efficient nonparametric estimation of causal effects in randomized trials with noncompliance," Biometrika, Biometrika Trust, vol. 96(1), pages 19-36.
- Peter E. Rossi, 2014. "Invited Paper —Even the Rich Can Make Themselves Poor: A Critical Examination of IV Methods in Marketing Applications," Marketing Science, INFORMS, vol. 33(5), pages 655-672, September.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, May.
- Aaron Fisher & Edward H. Kennedy, 2021. "Visually Communicating and Teaching Intuition for Influence Functions," The American Statistician, Taylor & Francis Journals, vol. 75(2), pages 162-172, May.
- Philip Oreopoulos & Daniel Lang & Joshua Angrist, 2009.
"Incentives and Services for College Achievement: Evidence from a Randomized Trial,"
American Economic Journal: Applied Economics, American Economic Association, vol. 1(1), pages 136-163, January.
- Angrist, Joshua & Lang, Daniel W. & Oreopoulos, Philip, 2007. "Incentives and Services for College Achievement: Evidence from a Randomized Trial," IZA Discussion Papers 3134, Institute of Labor Economics (IZA).
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
- Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Chen, Zhao-Guo, 1990. "An extension of Lai and Wei's law of the iterated logarithm with applications to time series analysis and regression," Journal of Multivariate Analysis, Elsevier, vol. 32(1), pages 55-69, January.
- Linbo Wang & Eric Tchetgen Tchetgen, 2018. "Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 531-550, June.
- Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
- Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
- Tan, Zhiqiang, 2006. "Regression and Weighting Methods for Causal Inference Using Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1607-1618, December.
- Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.
- Rahul Singh, 2021. "Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension," Papers 2102.11076, arXiv.org, revised Jul 2024.
- Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2022.
"The influence function of semiparametric estimators,"
Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers 44/15, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers CWP44/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers CWP06/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The Influence Function of Semiparametric Estimators," CIRJE F-Series CIRJE-F-985, CIRJE, Faculty of Economics, University of Tokyo.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers 06/17, Institute for Fiscal Studies.
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
- Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
- V Chernozhukov & W K Newey & R Singh, 2023.
"A simple and general debiased machine learning theorem with finite-sample guarantees,"
Biometrika, Biometrika Trust, vol. 110(1), pages 257-264.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2021. "A Simple and General Debiased Machine Learning Theorem with Finite Sample Guarantees," Papers 2105.15197, arXiv.org, revised Oct 2022.
- Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013.
"Program evaluation with high-dimensional data,"
CeMMAP working papers
CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers 55/15, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers CWP33/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 57/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers CWP55/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers 33/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 77/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ting Ye & Ashkan Ertefaie & James Flory & Sean Hennessy & Dylan S. Small, 2023. "Instrumented difference‐in‐differences," Biometrics, The International Biometric Society, vol. 79(2), pages 569-581, June.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-09-23 (Big Data)
- NEP-ECM-2024-09-23 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.09598. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.