IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v28y2019i2p280-298.html
   My bibliography  Save this article

How robust are reference pricing studies on outpatient medical procedures? Three different preprocessing techniques applied to difference‐in differences

Author

Listed:
  • Timothy Tyler Brown
  • Juan Pablo Atal

Abstract

The evaluation of policies that are not randomly assigned on outcomes generated by nonlinear data generating processes often requires modeling assumptions for which there is little theoretical guidance. This paper revisits previously published difference‐in‐differences results of an important example, the introduction of reference pricing to common outpatient procedures, to assess the robustness of the estimated impacts by using different matching, and reweighting techniques to preprocess the data. These techniques improve covariate balance and reduce model dependence. Specifically, we examine the robustness of the effect of reference pricing on patient site‐of‐care choice, total expenditures, and complication rates. We apply three preprocessing methods: propensity score reweighting, exact matching, and genetic matching. Propensity score reweighting is a technique for achieving covariate balance but does not balance higher‐order moments and may lead to bias and inefficiency in estimating treatment effects in the context of nonlinear data generating processes. In contrast, exact matching and genetic matching are designed to balance higher‐order moments. We find that although the use of the preprocessing techniques is a valuable robustness check showing that some results are sensitive to the method used, the three approaches generally yield results that do not statistically differ from the published results.

Suggested Citation

  • Timothy Tyler Brown & Juan Pablo Atal, 2019. "How robust are reference pricing studies on outpatient medical procedures? Three different preprocessing techniques applied to difference‐in differences," Health Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 280-298, February.
  • Handle: RePEc:wly:hlthec:v:28:y:2019:i:2:p:280-298
    DOI: 10.1002/hec.3841
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.3841
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.3841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hugo Ñopo, 2008. "Matching as a Tool to Decompose Wage Gaps," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 290-299, May.
    2. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    3. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    4. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    5. Puhani, Patrick A., 2012. "The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models," Economics Letters, Elsevier, vol. 115(1), pages 85-87.
    6. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    7. Matteo Galizzi & Simone Ghislandi & Marisa Miraldo, 2011. "Effects of Reference Pricing in Pharmaceutical Markets," PharmacoEconomics, Springer, vol. 29(1), pages 17-33, January.
    8. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    9. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    10. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    11. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    12. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2004. "Evaluating the Employment Impact of a Mandatory Job Search Program," Journal of the European Economic Association, MIT Press, vol. 2(4), pages 569-606, June.
    13. Whaley, Christopher M. & Guo, Chaoran & Brown, Timothy T., 2017. "The moral hazard effects of consumer responses to targeted cost-sharing," Journal of Health Economics, Elsevier, vol. 56(C), pages 201-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annika Herr & Torben Stühmeier & Tobias Wenzel, 2023. "More cost‐sharing, less cost? Evidence on reference price drugs," Health Economics, John Wiley & Sons, Ltd., vol. 32(2), pages 413-435, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Centeno, Luis & Centeno, Mário & Novo, Álvaro A., 2009. "Evaluating job-search programs for old and young individuals: Heterogeneous impact on unemployment duration," Labour Economics, Elsevier, vol. 16(1), pages 12-25, January.
    4. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    5. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    6. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    7. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    8. Iacus, Stefano & Porro, Giuseppe, 2008. "Invariant and Metric Free Proximities for Data Matching: An R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i11).
    9. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    10. Yonatan Eyal, 2020. "Self-Assessment Variables as a Source of Information in the Evaluation of Intervention Programs: A Theoretical and Methodological Framework," SAGE Open, , vol. 10(1), pages 21582440198, January.
    11. Gabriel M Ahlfeldt, 2018. "Weights to Address Non-parallel Trends in Panel Difference-in-differences Models," CESifo Economic Studies, CESifo Group, vol. 64(2), pages 216-240.
    12. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2023. "Gender and agricultural Productivity: Econometric evidence from Malawi, Tanzania, and Uganda," World Development, Elsevier, vol. 171(C).
    13. Siddique Abu Bakkar, 2020. "Identity-based Earning Discrimination among Chinese People," IZA Journal of Development and Migration, Sciendo & Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 11(1), pages 1-42, January.
    14. Stephan Thomsen, 2009. "Job Search Assistance Programs in Europe: Evaluation Methods and Recent Empirical Findings," FEMM Working Papers 09018, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    15. Kevin Arceneaux & Alan S. Gerber & Donald P. Green, 2010. "A Cautionary Note on the Use of Matching to Estimate Causal Effects: An Empirical Example Comparing Matching Estimates to an Experimental Benchmark," Sociological Methods & Research, , vol. 39(2), pages 256-282, November.
    16. Iacus, Stefano M. & Porro, Giuseppe, 2007. "Missing data imputation, matching and other applications of random recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 773-789, October.
    17. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    18. Bernhard Boockmann & Tobias Brändle, 2019. "Coaching, Counseling, Case‐Working: Do They Help the Older Unemployed Out of Benefit Receipt and Back Into the Labor Market?," German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 436-468, November.
    19. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    20. Díaz, Juan José & Jaramillo, Miguel, 2006. "An Evaluation of the Peruvian "Youth Labor Training Program" - PROJOVEN," IDB Publications (Working Papers) 3000, Inter-American Development Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:28:y:2019:i:2:p:280-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.