IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v172y2009i1p3-20.html
   My bibliography  Save this article

Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: an application to acquired immune deficiency syndrome data

Author

Listed:
  • Stuart R. Lipsitz
  • Garrett M. Fitzmaurice
  • Joseph G. Ibrahim
  • Debajyoti Sinha
  • Michael Parzen
  • Steven Lipshultz

Abstract

Summary. In a large, prospective longitudinal study designed to monitor cardiac abnormalities in children born to women who are infected with the human immunodeficiency virus, instead of a single outcome variable, there are multiple binary outcomes (e.g. abnormal heart rate, abnormal blood pressure and abnormal heart wall thickness) considered as joint measures of heart function over time. In the presence of missing responses at some time points, longitudinal marginal models for these multiple outcomes can be estimated by using generalized estimating equations (GEEs), and consistent estimates can be obtained under the assumption of a missingness completely at random mechanism. When the missing data mechanism is missingness at random, i.e. the probability of missing a particular outcome at a time point depends on observed values of that outcome and the remaining outcomes at other time points, we propose joint estimation of the marginal models by using a single modified GEE based on an EM‐type algorithm. The method proposed is motivated by the longitudinal study of cardiac abnormalities in children who were born to women infected with the human immunodeficiency virus, and analyses of these data are presented to illustrate the application of the method. Further, in an asymptotic study of bias, we show that, under a missingness at random mechanism in which missingness depends on all observed outcome variables, our joint estimation via the modified GEE produces almost unbiased estimates, provided that the correlation model has been correctly specified, whereas estimates from standard GEEs can lead to substantial bias.

Suggested Citation

  • Stuart R. Lipsitz & Garrett M. Fitzmaurice & Joseph G. Ibrahim & Debajyoti Sinha & Michael Parzen & Steven Lipshultz, 2009. "Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: an application to acquired immune deficiency syndrome data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 3-20, January.
  • Handle: RePEc:bla:jorssa:v:172:y:2009:i:1:p:3-20
    DOI: 10.1111/j.1467-985X.2008.00564.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2008.00564.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2008.00564.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    2. Garrett M. Fitzmaurice & Stuart R. Lipsitz & Geert Molenberghs & Joseph G. Ibrahim, 2001. "Bias in Estimating Association Parameters for Longitudinal Binary Responses with Drop‐Outs," Biometrics, The International Biometric Society, vol. 57(1), pages 15-21, March.
    3. Stuart R. Lipsitz & Geert Molenberghs & Garrett M. Fitzmaurice & Joseph Ibrahim, 2000. "GEE with Gaussian Estimation of the Correlations When Data Are Incomplete," Biometrics, The International Biometric Society, vol. 56(2), pages 528-536, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artz G. Luwanda & Henry G. Mwambi, 2016. "A Nonlinear Mixed-Effects Model for Multivariate Longitudinal Data with Dropout with Application to HIV Disease Dynamics," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 277-294, June.
    2. Thomas Suesse & Ivy Liu, 2013. "Modelling Strategies for Repeated Multiple Response Data," International Statistical Review, International Statistical Institute, vol. 81(2), pages 230-248, August.
    3. G. Inan & R. Yucel, 2017. "Joint GEEs for multivariate correlated data with incomplete binary outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1920-1937, August.
    4. Clemontina A. Davenport & Arnab Maity & Patrick F. Sullivan & Jung-Ying Tzeng, 2018. "A Powerful Test for SNP Effects on Multivariate Binary Outcomes Using Kernel Machine Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 117-138, April.
    5. Manuel Gomes & Edmond S.-W. Ng & Richard Grieve & Richard Nixon & James Carpenter & Simon G. Thompson, 2012. "Developing Appropriate Methods for Cost-Effectiveness Analysis of Cluster Randomized Trials," Medical Decision Making, , vol. 32(2), pages 350-361, March.
    6. Ângela Jornada Ben & Johanna M. Dongen & Mohamed El Alili & Martijn W. Heymans & Jos W. R. Twisk & Janet L. MacNeil-Vroomen & Maartje Wit & Susan E. M. Dijk & Teddy Oosterhuis & Judith E. Bosmans, 2023. "The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(6), pages 951-965, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garrett M. Fitzmaurice & Stuart R. Lipsitz & Geert Molenberghs & Joseph G. Ibrahim, 2001. "Bias in Estimating Association Parameters for Longitudinal Binary Responses with Drop‐Outs," Biometrics, The International Biometric Society, vol. 57(1), pages 15-21, March.
    2. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    3. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    4. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    5. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    6. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    7. Timothy Tyler Brown & Juan Pablo Atal, 2019. "How robust are reference pricing studies on outpatient medical procedures? Three different preprocessing techniques applied to difference‐in differences," Health Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 280-298, February.
    8. L. Sun & M. K. Clayton, 2008. "Bayesian Analysis of Crossclassified Spatial Data with Autocorrelation," Biometrics, The International Biometric Society, vol. 64(1), pages 74-84, March.
    9. Rakesh Niraj & V. Padmanabhan & P. B. Seetharaman, 2008. "Research Note—A Cross-Category Model of Households' Incidence and Quantity Decisions," Marketing Science, INFORMS, vol. 27(2), pages 225-235, 03-04.
    10. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    11. Francesco Bartolucci & Claudia Pigini, 2017. "Granger causality in dynamic binary short panel data models," Working Papers 421, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    12. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    13. Bartolucci, Francesco & Nigro, Valentina, 2012. "Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data," Journal of Econometrics, Elsevier, vol. 170(1), pages 102-116.
    14. Laura Andrissi & Felice Petraglia & Alessandro Giuliani & Filiberto Maria Severi & Stefano Angioni & Herbert Valensise & Silvia Vannuccini & Nunziata Comoretto & Vittoradolfo Tambone, 2015. "The Influence of Doctor-Patient and Midwife-Patient Relationship in Quality Care Perception of Italian Pregnant Women: An Exploratory Study," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    15. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Stuart R. Lipsitz & Garrett M. Fitzmaurice & Roger D. Weiss, 2020. "Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 890-904, December.
    17. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2023. "Conditional inference and bias reduction for partial effects estimation of fixed-effects logit models," Empirical Economics, Springer, vol. 64(5), pages 2257-2290, May.
    18. Bartolucci, Francesco & Pigini, Claudia, 2017. "cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i07).
    19. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    20. Fried, Roland & Kuhls, Silvia & Molina, Isabel, 2006. "Analyzing Associations in Multivariate Binary Time Series," Technical Reports 2006,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:172:y:2009:i:1:p:3-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.