IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_767_10.html
   My bibliography  Save this paper

Real time forecasts of inflation: the role of financial variables

Author

Listed:
  • Libero Monteforte

    (Bank of Italy)

  • Gianluca Moretti

    (Bank of Italy)

Abstract

We present a mixed-frequency model for daily forecasts of euro area inflation. The model combines a monthly index of core inflation with daily data from financial markets; estimates are carried out with the MIDAS regression approach. The forecasting ability of the model in real-time is compared with that of standard VARs and of daily quotes of economic derivatives on euro area inflation. We find that the inclusion of daily variables helps to reduce forecast errors with respect to models that consider only monthly variables. The mixed-frequency model also displays superior predictive performance with respect to forecasts solely based on economic derivatives.

Suggested Citation

  • Libero Monteforte & Gianluca Moretti, 2010. "Real time forecasts of inflation: the role of financial variables," Temi di discussione (Economic working papers) 767, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_767_10
    as

    Download full text from publisher

    File URL: http://www.bancaditalia.it/pubblicazioni/temi-discussione/2010/2010-0767/en_tema_767.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    forecasting inflation; real time forecasts; dynamic factor models; MIDAS regression; economic derivatives;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G19 - Financial Economics - - General Financial Markets - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_767_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.