IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v19y2003i01p49-77_19.html
   My bibliography  Save this article

The Asymptotic Efficiency Of Cointegration Estimators Under Temporal Aggregation

Author

Listed:
  • Chambers, Marcus J.

Abstract

This paper examines the effects of temporal aggregation on the asymptotic variances of estimators in cointegrated systems. Two important findings are obtained. First, estimators based on flow data alone are more efficient than when the data are all stocks or a mixture of stocks and flows. Second, estimators based on flow data are as efficient as when the data are recorded continuously. A method of improving efficiency with stock variables is also proposed, and an empirical illustration of the method is provided in the context of long-run money demand regressions.I thank Roy Bailey, Rex Bergstrom, Roderick McCrorie, a co-editor, and two anonymous referees for helpful comments. I also thank Katsumi Shimotsu for help with some data issues. None of these individuals are implicated, however, in any possible shortcomings of this paper. The financial support provided by the ESRC under grant R000221818 is gratefully acknowledged.

Suggested Citation

  • Chambers, Marcus J., 2003. "The Asymptotic Efficiency Of Cointegration Estimators Under Temporal Aggregation," Econometric Theory, Cambridge University Press, vol. 19(1), pages 49-77, February.
  • Handle: RePEc:cup:etheor:v:19:y:2003:i:01:p:49-77_19
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466603191037/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Gersing & Leopold Soegner & Manfred Deistler, 2022. "Retrieval from Mixed Sampling Frequency: Generic Identifiability in the Unit Root VAR," Papers 2204.05952, arXiv.org, revised Jul 2023.
    2. Antonio Diez de los Rios & Enrique Sentana, 2011. "Testing Uncovered Interest Parity: A Continuous‐Time Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 1215-1251, November.
    3. Chambers, Marcus J., 2020. "Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data," Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
    4. J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
    5. Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014. "Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
    6. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    7. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    8. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    9. Dierk Herzer & Holger Strulik & Sebastian Vollmer, 2012. "The long-run determinants of fertility: one century of demographic change 1900–1999," Journal of Economic Growth, Springer, vol. 17(4), pages 357-385, December.
    10. Chambers, M.J. & McCrorie, J.R., 2004. "Frequency Domain Gaussian Estimation of Temporally Aggregated Cointegrated Systems," Discussion Paper 2004-40, Tilburg University, Center for Economic Research.
    11. J. Isaac Miller, 2019. "Testing Cointegrating Relationships Using Irregular and Non‐Contemporaneous Series with an Application to Paleoclimate Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 936-950, November.
    12. Chambers, Marcus J. & Roderick McCrorie, J., 2007. "Frequency domain estimation of temporally aggregated Gaussian cointegrated systems," Journal of Econometrics, Elsevier, vol. 136(1), pages 1-29, January.
    13. Chambers, MJ, 2016. "The Effects of Sampling Frequency on Detrending Methods for Unit Root Tests," Economics Discussion Papers 16062, University of Essex, Department of Economics.
    14. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:19:y:2003:i:01:p:49-77_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.