IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v19y2021i2p236-257..html
   My bibliography  Save this article

Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly
[Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data]

Author

Listed:
  • Gianluca De Nard
  • Olivier Ledoit
  • Michael Wolf

Abstract

This paper injects factor structure into the estimation of time-varying, large-dimensional covariance matrices of stock returns. Existing factor models struggle to model the covariance matrix of residuals in the presence of time-varying conditional heteroskedasticity in large universes. Conversely, rotation-equivariant estimators of large-dimensional time-varying covariance matrices forsake directional information embedded in market-wide risk factors. We introduce a new covariance matrix estimator that blends factor structure with time-varying conditional heteroskedasticity of residuals in large dimensions up to 1000 stocks. It displays superior all-around performance on historical data against a variety of state-of-the-art competitors, including static factor models, exogenous factor models, sparsity-based models, and structure-free dynamic models. This new estimator can be used to deliver more efficient portfolio selection and detection of anomalies in the cross-section of stock returns.

Suggested Citation

  • Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
  • Handle: RePEc:oup:jfinec:v:19:y:2021:i:2:p:236-257.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nby033
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca De Nard & Robert F. Engle & Bryan Kelly, 2024. "Factor-Mimicking Portfolios for Climate Risk," Financial Analysts Journal, Taylor & Francis Journals, vol. 80(3), pages 37-58, July.
    2. Molero-González, L. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A. & García-Medina, A., 2023. "Market Beta is not dead: An approach from Random Matrix Theory," Finance Research Letters, Elsevier, vol. 55(PA).
    3. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
    4. Llorens-Terrazas, Jordi & Brownlees, Christian, 2023. "Projected Dynamic Conditional Correlations," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1761-1776.
    5. Olivier Ledoit & Michael Wolf, 2022. "Markowitz portfolios under transaction costs," ECON - Working Papers 420, Department of Economics - University of Zurich, revised Sep 2024.
    6. Beck, Elliot & De Nard, Gianluca & Wolf, Michael, 2023. "Improved inference in financial factor models," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 364-379.
    7. Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.
    8. Jin Yuan & Xianghui Yuan, 2023. "A Best Linear Empirical Bayes Method for High-Dimensional Covariance Matrix Estimation," SAGE Open, , vol. 13(2), pages 21582440231, June.
    9. Liu, Cheng & Wang, Moming & Xia, Ningning, 2022. "Design-free estimation of integrated covariance matrices for high-frequency data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    11. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    12. Christian Bongiorno & Damien Challet, 2023. "Covariance matrix filtering and portfolio optimisation: the Average Oracle vs Non-Linear Shrinkage and all the variants of DCC-NLS," Working Papers hal-04323624, HAL.
    13. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    14. Wu, Yunlin & Huang, Lei & Jiang, Hui, 2023. "Optimization of large portfolio allocation for new-energy stocks: Evidence from China," Energy, Elsevier, vol. 285(C).
    15. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
    16. Rafael Alves & Diego S. de Brito & Marcelo C. Medeiros & Ruy M. Ribeiro, 2023. "Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage," Papers 2303.16151, arXiv.org.
    17. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    18. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    19. Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
    20. Chuting Sun & Qi Wu & Xing Yan, 2023. "Dynamic CVaR Portfolio Construction with Attention-Powered Generative Factor Learning," Papers 2301.07318, arXiv.org, revised Jan 2024.
    21. Yujia Hu, 2023. "A Heuristic Approach to Forecasting and Selection of a Portfolio with Extra High Dimensions," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    22. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    23. Sun, Chuting & Wu, Qi & Yan, Xing, 2024. "Dynamic CVaR portfolio construction with attention-powered generative factor learning," Journal of Economic Dynamics and Control, Elsevier, vol. 160(C).

    More about this item

    Keywords

    dynamic conditional correlations; factor models; multivariate GARCH; Markowitz portfolio selection; nonlinear shrinkage;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:19:y:2021:i:2:p:236-257.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.