IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2015cf970.html
   My bibliography  Save this paper

Comparison of Linear Shrinkage Estimators of a Large Covariance Matrix in Normal and Non-normal Distributions

Author

Listed:
  • Yuki Ikeda

    (Graduate School of Economics, The University of Tokyo)

  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)

  • Muni S. Srivastava

    (Department of Statistics, University of Toronto)

Abstract

The problem of estimating the large covariance matrix of both normal and non-normal distributions is addressed. In convex combinations of the sample covariance matrix and the identity matrix multiplied by a scalor statistic, we suggest a new estimator of the optimal weight based on exact or approximately unbiased estimators of the numerator and denominator of the optimal weight in non-normal cases.  It is also demonstrated that the estimators given in the literature have second-order biases. It is numerically shown that the proposed estimator has a good risk performance. --

Suggested Citation

  • Yuki Ikeda & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "Comparison of Linear Shrinkage Estimators of a Large Covariance Matrix in Normal and Non-normal Distributions," CIRJE F-Series CIRJE-F-970, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2015cf970
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2015/2015cf970.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Srivastava, Muni S. & Kollo, Tõnu & von Rosen, Dietrich, 2011. "Some tests for the covariance matrix with fewer observations than the dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1090-1103, July.
    3. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    4. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    5. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    6. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    7. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    8. Michael J. Daniels & Robert E. Kass, 2001. "Shrinkage Estimators for Covariance Matrices," Biometrics, The International Biometric Society, vol. 57(4), pages 1173-1184, December.
    9. Fisher, Thomas J. & Sun, Xiaoqian, 2011. "Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1909-1918, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
    2. Tatsuya Kubokawa & Muni S. Srivastava, 2013. "Optimal Ridge-type Estimators of Covariance Matrix in High Dimension," CIRJE F-Series CIRJE-F-906, CIRJE, Faculty of Economics, University of Tokyo.
    3. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    4. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    5. Tatsuya Kubokawa & Akira Inoue, 2012. "Estimation of Covariance and Precision Matrices in High Dimension," CIRJE F-Series CIRJE-F-855, CIRJE, Faculty of Economics, University of Tokyo.
    6. Ikeda, Yuki & Kubokawa, Tatsuya, 2016. "Linear shrinkage estimation of large covariance matrices using factor models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 61-81.
    7. Nhat Minh Nguyen & Trung Duc Nguyen & Eleftherios I. Thalassinos & Hoang Anh Le, 2022. "The Performance of Shrinkage Estimator for Stock Portfolio Selection in Case of High Dimensionality," JRFM, MDPI, vol. 15(6), pages 1-12, June.
    8. Brett Naul & Bala Rajaratnam & Dario Vincenzi, 2016. "The role of the isotonizing algorithm in Stein’s covariance matrix estimator," Computational Statistics, Springer, vol. 31(4), pages 1453-1476, December.
    9. Yuki Ikeda & Tatsuya Kubokawa, 2015. "Linear Shrinkage Estimation of Large Covariance Matrices with Use of Factor Models," CIRJE F-Series CIRJE-F-958, CIRJE, Faculty of Economics, University of Tokyo.
    10. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2020. "Portfolio selection: shrinking the time-varying inverse conditional covariance matrix," Statistical Papers, Springer, vol. 61(6), pages 2583-2604, December.
    11. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    12. Zhendong Wang & Xingzhong Xu, 2021. "High-dimensional sphericity test by extended likelihood ratio," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1169-1212, November.
    13. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    14. Carel F. W. Peeters & Mark A. Wiel & Wessel N. Wieringen, 2020. "The spectral condition number plot for regularization parameter evaluation," Computational Statistics, Springer, vol. 35(2), pages 629-646, June.
    15. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2018. "A Stein-type shrinkage estimator of the covariance matrix for portfolio selections," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 931-952, November.
    16. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    17. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    18. van Wieringen, Wessel N. & Peeters, Carel F.W., 2016. "Ridge estimation of inverse covariance matrices from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 284-303.
    19. Haddouche, Anis M. & Fourdrinier, Dominique & Mezoued, Fatiha, 2021. "Scale matrix estimation of an elliptically symmetric distribution in high and low dimensions," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    20. Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2015cf970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.