IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i8d10.1007_s00184-018-0663-2.html
   My bibliography  Save this article

A Stein-type shrinkage estimator of the covariance matrix for portfolio selections

Author

Listed:
  • Ruili Sun

    (Southwestern University of Finance and Economics)

  • Tiefeng Ma

    (Southwestern University of Finance and Economics)

  • Shuangzhe Liu

    (University of Canberra)

Abstract

The covariance matrix plays a crucial role in portfolio optimization problems as the risk and correlation measure of asset returns. An improved estimation of the covariance matrix can enhance the performance of the portfolio. In this paper, based on the Cholesky decomposition of the covariance matrix, a Stein-type shrinkage strategy for portfolio weights is constructed under the mean-variance framework. Furthermore, according to the agent’s maximum expected utility value, a portfolio selection strategy is proposed. Finally, simulation experiments and an empirical study are used to test the feasibility of the proposed strategy. The numerical results show our portfolio strategy performs satisfactorily.

Suggested Citation

  • Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2018. "A Stein-type shrinkage estimator of the covariance matrix for portfolio selections," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 931-952, November.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:8:d:10.1007_s00184-018-0663-2
    DOI: 10.1007/s00184-018-0663-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0663-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0663-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Elena Vigna, 2014. "On efficiency of mean--variance based portfolio selection in defined contribution pension schemes," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 237-258, February.
    3. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    4. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    5. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    6. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    7. Yu, Bosco Wing-Tong & Pang, Wan Kai & Troutt, Marvin D. & Hou, Shui Hung, 2009. "Objective comparisons of the optimal portfolios corresponding to different utility functions," European Journal of Operational Research, Elsevier, vol. 199(2), pages 604-610, December.
    8. Ikeda, Yuki & Kubokawa, Tatsuya, 2016. "Linear shrinkage estimation of large covariance matrices using factor models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 61-81.
    9. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    10. repec:bla:jfinan:v:53:y:1998:i:5:p:1821-1827 is not listed on IDEAS
    11. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    12. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    13. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    14. Lan, Wei & Wang, Hansheng & Tsai, Chih-Ling, 2012. "A Bayesian information criterion for portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 88-99, January.
    15. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof, 2016. "Singular inverse Wishart distribution and its application to portfolio theory," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 314-326.
    16. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    17. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    18. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    19. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    20. Dominique Fourdrinier & William Strawderman, 2015. "Robust minimax Stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(4), pages 461-484, May.
    21. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    22. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    23. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    2. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    3. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2020. "Portfolio selection: shrinking the time-varying inverse conditional covariance matrix," Statistical Papers, Springer, vol. 61(6), pages 2583-2604, December.
    4. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    5. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    6. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    7. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    8. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    9. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    10. Mishra, Anil V., 2015. "Measures of equity home bias puzzle," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 293-312.
    11. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    12. Fotis Papailias & Dimitrios Thomakos, 2015. "Covariance averaging for improved estimation and portfolio allocation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(1), pages 31-59, February.
    13. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    14. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    15. Behr, Patrick & Guettler, Andre & Miebs, Felix, 2013. "On portfolio optimization: Imposing the right constraints," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1232-1242.
    16. Lim Hao Shen Keith, 2024. "Covariance Matrix Analysis for Optimal Portfolio Selection," Papers 2407.08748, arXiv.org.
    17. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    18. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    19. Mishra, Anil V., 2017. "Foreign bias in Australia's international equity holdings," Review of Financial Economics, Elsevier, vol. 33(C), pages 41-54.
    20. Miralles-Marcelo, José Luis & Miralles-Quirós, María del Mar & Miralles-Quirós, José Luis, 2015. "Improving international diversification benefits for US investors," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 64-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:8:d:10.1007_s00184-018-0663-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.