IDEAS home Printed from https://ideas.repec.org/a/cuf/journl/y2011v12i2p199-215.html
   My bibliography  Save this article

Estimating High Dimensional Covariance Matrices and its Applications

Author

Listed:
  • Jushan Bai

    (Department of Economics, Columbia University
    CEMA, Central University of Finance and Economics)

  • Shuzhong Shi

    (Department of Finance, Guanghua School of Management)

Abstract

Estimating covariance matrices is an important part of portfolio selection, risk management, and asset pricing. This paper reviews the recent development in estimating high dimensional covariance matrices, where the number of variables can be greater than the number of observations. The limitations of the sample covariance matrix are discussed. Several new approaches are presented, including the shrinkage method, the observable and latent factor method, the Bayesian approach, and the random matrix theory approach. For each method, the construction of covariance matrices is given. The relationships among these methods are discussed.

Suggested Citation

  • Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
  • Handle: RePEc:cuf:journl:y:2011:v:12:i:2:p:199-215
    as

    Download full text from publisher

    File URL: http://aeconf.com/Articles/Nov2011/aef120201.pdf
    Download Restriction: no

    File URL: http://down.aefweb.net/AefArticles/aef120201.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Paul P.J. Gao & Kevin X.D. Huang, 2008. "Aggregate Consumption-Wealth Ratio and the Cross-Section of Stock Returns: Some International Evidence," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 1-37, May.
    5. J. Ginger Meng & Gang Hu & Jushan Bai, 2011. "Olive: A Simple Method For Estimating Betas When Factors Are Measured With Error," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 34(1), pages 27-60, March.
    6. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    7. Campbell R. Harvey & Bruno Solnik & Guofu Zhou, 2002. "What Determines Expected International Asset Returns?," Annals of Economics and Finance, Society for AEF, vol. 3(2), pages 249-298, November.
    8. Olivier Ledoit & Pedro Santa-Clara & Michael Wolf, 2003. "Flexible Multivariate GARCH Modeling with an Application to International Stock Markets," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 735-747, August.
    9. Sharifi, S. & Crane, M. & Shamaie, A. & Ruskin, H., 2004. "Random matrix theory for portfolio optimization: a stability approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 629-643.
    10. Pafka, Szilárd & Kondor, Imre, 2003. "Noisy covariance matrices and portfolio optimization II," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 487-494.
    11. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    12. Priscilla Swartz, 2006. "Global Versus Regional Systematic Risk and International Asset Allocations in Asia," Annals of Economics and Finance, Society for AEF, vol. 7(1), pages 77-89, May.
    13. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    14. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    15. Martin Lettau & Sydney Ludvigson, 2001. "Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying," Journal of Political Economy, University of Chicago Press, vol. 109(6), pages 1238-1287, December.
    16. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    17. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    18. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    19. Connor, Gregory & Korajczyk, Robert A., 1988. "Risk and return in an equilibrium APT : Application of a new test methodology," Journal of Financial Economics, Elsevier, vol. 21(2), pages 255-289, September.
    20. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    21. Jones, Christopher S., 2001. "Extracting factors from heteroskedastic asset returns," Journal of Financial Economics, Elsevier, vol. 62(2), pages 293-325, November.
    22. Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1577-1606, December.
    23. George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
    24. George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
    25. Plerou, V & Gopikrishnan, P & Rosenow, B & Amaral, L.A.N & Stanley, H.E, 2000. "A random matrix theory approach to financial cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 374-382.
    26. Sharpe, William F., 1967. "Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(2), pages 76-84, June.
    27. Laurent Laloux & Pierre Cizeau & Jean-Philippe Bouchaud & Marc Potters, 1999. "Random matrix theory," Science & Finance (CFM) working paper archive 500052, Science & Finance, Capital Fund Management.
    28. Lehmann, Bruce N. & Modest, David M., 1988. "The empirical foundations of the arbitrage pricing theory," Journal of Financial Economics, Elsevier, vol. 21(2), pages 213-254, September.
    29. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    30. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    31. Michael J. Daniels & Robert E. Kass, 2001. "Shrinkage Estimators for Covariance Matrices," Biometrics, The International Biometric Society, vol. 57(4), pages 1173-1184, December.
    32. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    33. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    34. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    35. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    36. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    37. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    2. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    3. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    4. Tsionas, Mike G., 2016. "Parameters measuring bank risk and their estimation," European Journal of Operational Research, Elsevier, vol. 250(1), pages 291-304.
    5. Efthymios G. Tsionas, 2014. "On modeling banking risk," Working Papers 183, Bank of Greece.
    6. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    7. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    8. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    9. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
    10. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    11. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    12. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    13. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    14. Zhuo Chen & Gregory Connor & Robert A Korajczyk, 2018. "A Performance Comparison of Large-n Factor Estimators," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 8(1), pages 153-182.
    15. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
    16. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    17. Sainan Jin & Liangjun Su & Yonghui Zhang, 2015. "Nonparametric testing for anomaly effects in empirical asset pricing models," Empirical Economics, Springer, vol. 48(1), pages 9-36, February.
    18. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    19. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    20. Goyal, Amit & Pérignon, Christophe & Villa, Christophe, 2008. "How common are common return factors across the NYSE and Nasdaq?," Journal of Financial Economics, Elsevier, vol. 90(3), pages 252-271, December.

    More about this item

    Keywords

    Factor analysis; Principal components; Singular value decomposition; Random matrix theory; Empirical Bayes; Shrinkage method; Optimal portfolios; CAPM; APT; GMM;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cuf:journl:y:2011:v:12:i:2:p:199-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Qiang Gao (email available below). General contact details of provider: https://edirc.repec.org/data/emcufcn.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.