IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i8d10.1007_s00184-021-00816-3.html
   My bibliography  Save this article

High-dimensional sphericity test by extended likelihood ratio

Author

Listed:
  • Zhendong Wang

    (Beijing Institute of Technology)

  • Xingzhong Xu

    (Beijing Institute of Technology
    Beijing Institute of Technology)

Abstract

Testing sphericity of the covariance matrices has been an active part in contemporary statistics. In this paper, we put forward a new test procedure for high-dimensional sphericity test based on the likelihood ratio test (LRT). The proposed test broadens the applicability of LRT which fails when the dimension is larger than the sample size. Under general population with finite fourth moment, the test statistic is shown to be asymptotically normally distributed under the null hypothesis. When the alternative hypothesis is true, the limiting distribution of the test statistic is derived under the spiked model. Simulation studies reveal that the proposed test controls the Type I error rate very well and outperforms some well-known tests in terms of the empirical power in several examined situations.

Suggested Citation

  • Zhendong Wang & Xingzhong Xu, 2021. "High-dimensional sphericity test by extended likelihood ratio," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1169-1212, November.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:8:d:10.1007_s00184-021-00816-3
    DOI: 10.1007/s00184-021-00816-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-021-00816-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-021-00816-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Xue, 2020. "Some sphericity tests for high dimensional data based on ratio of the traces of sample covariance matrices," Statistics & Probability Letters, Elsevier, vol. 156(C).
    2. Wang, Qinwen & Silverstein, Jack W. & Yao, Jian-feng, 2014. "A note on the CLT of the LSS for sample covariance matrix from a spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 194-207.
    3. Srivastava, Muni S. & Kollo, Tõnu & von Rosen, Dietrich, 2011. "Some tests for the covariance matrix with fewer observations than the dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1090-1103, July.
    4. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    5. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    6. Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
    7. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    8. Fisher, Thomas J. & Sun, Xiaoqian & Gallagher, Colin M., 2010. "A new test for sphericity of the covariance matrix for high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2554-2570, November.
    9. Changliang Zou & Liuhua Peng & Long Feng & Zhaojun Wang, 2014. "Multivariate sign-based high-dimensional tests for sphericity," Biometrika, Biometrika Trust, vol. 101(1), pages 229-236.
    10. Birke, Melanie & Dette, Holger, 2005. "A note on testing the covariance matrix for large dimension," Statistics & Probability Letters, Elsevier, vol. 74(3), pages 281-289, October.
    11. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhendong & Xu, Xingzhong, 2021. "Testing high dimensional covariance matrices via posterior Bayes factor," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    2. Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
    3. Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.
    4. Zhang, Xiaoxu & Zhao, Ping & Feng, Long, 2022. "Robust sphericity test in the panel data model," Statistics & Probability Letters, Elsevier, vol. 182(C).
    5. Qian, Manling & Tao, Li & Li, Erqian & Tian, Maozai, 2020. "Hypothesis testing for the identity of high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 161(C).
    6. Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
    7. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    8. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
    9. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    10. Glombek, Konstantin, 2013. "A Jarque-Bera test for sphericity of a large-dimensional covariance matrix," Discussion Papers in Econometrics and Statistics 1/13, University of Cologne, Institute of Econometrics and Statistics.
    11. Butucea, Cristina & Zgheib, Rania, 2016. "Sharp minimax tests for large Toeplitz covariance matrices with repeated observations," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 164-176.
    12. Deepak Nag Ayyala & Santu Ghosh & Daniel F. Linder, 2022. "Covariance matrix testing in high dimension using random projections," Computational Statistics, Springer, vol. 37(3), pages 1111-1141, July.
    13. Long Feng & Changliang Zou & Zhaojun Wang, 2016. "Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 721-735, April.
    14. Yuki Ikeda & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "Comparison of Linear Shrinkage Estimators of a Large Covariance Matrix in Normal and Non-normal Distributions," CIRJE F-Series CIRJE-F-970, CIRJE, Faculty of Economics, University of Tokyo.
    15. Feng, Long & Liu, Binghui, 2017. "High-dimensional rank tests for sphericity," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 217-233.
    16. Mingjuan Zhang & Libin Jin, 2024. "High-Dimensional U-Statistics Type Hypothesis Testing via Jackknife Pseudo-Values with Multiplier Bootstrap," Mathematics, MDPI, vol. 12(23), pages 1-20, December.
    17. Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
    18. Tang, Ping & Lu, Rongrong & Xie, Junshan, 2022. "Asymptotic distribution of the maximum interpoint distance for high-dimensional data," Statistics & Probability Letters, Elsevier, vol. 190(C).
    19. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    20. Laíla Luana Campos & Daniel Furtado Ferreira, 2022. "Robust modified classical spherical tests in the presence of outliers," Statistical Papers, Springer, vol. 63(5), pages 1561-1576, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:8:d:10.1007_s00184-021-00816-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.