IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i6p1090-1103.html
   My bibliography  Save this article

Some tests for the covariance matrix with fewer observations than the dimension under non-normality

Author

Listed:
  • Srivastava, Muni S.
  • Kollo, Tõnu
  • von Rosen, Dietrich

Abstract

This article analyzes whether some existing tests for the pxp covariance matrix [Sigma] of the N independent identically distributed observation vectors work under non-normality. We focus on three hypotheses testing problems: (1) testing for sphericity, that is, the covariance matrix [Sigma] is proportional to an identity matrix Ip; (2) the covariance matrix [Sigma] is an identity matrix Ip; and (3) the covariance matrix is a diagonal matrix. It is shown that the tests proposed by Srivastava (2005) for the above three problems are robust under the non-normality assumption made in this article irrespective of whether N =p, but (N,p)-->[infinity], and N/p may go to zero or infinity. Results are asymptotic and it may be noted that they may not hold for finite (N,p).

Suggested Citation

  • Srivastava, Muni S. & Kollo, Tõnu & von Rosen, Dietrich, 2011. "Some tests for the covariance matrix with fewer observations than the dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1090-1103, July.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:6:p:1090-1103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(11)00041-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagao, Hisao & Srivastava, M. S., 1992. "On the distributions of some test criteria for a covariance matrix under local alternatives and bootstrap approximations," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 331-350, November.
    2. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    3. Jonsson, Dag, 1982. "Some limit theorems for the eigenvalues of a sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 1-38, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    2. Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
    3. Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
    4. Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.
    5. Qin, Yingli & Li, Weiming, 2016. "Testing the order of a population spectral distribution for high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 75-82.
    6. Long Feng & Changliang Zou & Zhaojun Wang, 2016. "Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 721-735, April.
    7. Yuki Ikeda & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "Comparison of Linear Shrinkage Estimators of a Large Covariance Matrix in Normal and Non-normal Distributions," CIRJE F-Series CIRJE-F-970, CIRJE, Faculty of Economics, University of Tokyo.
    8. Aki Ishii & Kazuyoshi Yata & Makoto Aoshima, 2021. "Hypothesis tests for high-dimensional covariance structures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 599-622, June.
    9. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    10. Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2013. "A necessary test for complete independence in high dimensions using rank-correlations," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 224-232.
    11. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    12. Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.
    13. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    14. Glombek, Konstantin, 2013. "A Jarque-Bera test for sphericity of a large-dimensional covariance matrix," Discussion Papers in Econometrics and Statistics 1/13, University of Cologne, Institute of Econometrics and Statistics.
    15. Zhendong Wang & Xingzhong Xu, 2021. "High-dimensional sphericity test by extended likelihood ratio," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1169-1212, November.
    16. Qian, Manling & Tao, Li & Li, Erqian & Tian, Maozai, 2020. "Hypothesis testing for the identity of high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 161(C).
    17. Tatsuya Kubokawa & Muni S. Srivastava, 2013. "Optimal Ridge-type Estimators of Covariance Matrix in High Dimension," CIRJE F-Series CIRJE-F-906, CIRJE, Faculty of Economics, University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiaqi & Zhang, Yangchun & Li, Weiming & Tian, Boping, 2018. "A supplement on CLT for LSS under a large dimensional generalized spiked covariance model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 57-65.
    2. Yanagihara, Hirokazu & Tonda, Tetsuji & Matsumoto, Chieko, 2005. "The effects of nonnormality on asymptotic distributions of some likelihood ratio criteria for testing covariance structures under normal assumption," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 237-264, October.
    3. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    4. Bai, Zhidong & Silverstein, Jack W., 2022. "A tribute to P.R. Krishnaiah," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Peng, Hanxiang & Schick, Anton, 2018. "Asymptotic normality of quadratic forms with random vectors of increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 22-39.
    6. Birke, Melanie & Dette, Holger, 2005. "A note on testing the covariance matrix for large dimension," Statistics & Probability Letters, Elsevier, vol. 74(3), pages 281-289, October.
    7. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    8. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    9. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    10. Bender, Martin, 2008. "Global fluctuations in general [beta] Dyson's Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1022-1042, June.
    11. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    12. Friesen, Olga & Löwe, Matthias & Stolz, Michael, 2013. "Gaussian fluctuations for sample covariance matrices with dependent data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 270-287.
    13. Schott, James R., 2008. "A test for independence of two sets of variables when the number of variables is large relative to the sample size," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3096-3102, December.
    14. Badi H. Baltagi & Chihwa Kao & Long Liu, 2013. "The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 241-270, September.
    15. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    16. Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
    17. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    18. Jiti Gao & Xiao Han & Guangming Pan & Yanrong Yang, 2017. "High dimensional correlation matrices: the central limit theorem and its applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 677-693, June.
    19. Mao, Guangyu, 2015. "A note on testing complete independence for high dimensional data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 82-85.
    20. Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:6:p:1090-1103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.