IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/396.html
   My bibliography  Save this paper

Parameter estimation in nonlinear AR-GARCH models

Author

Listed:
  • Mika Meitz
  • Pentti Saikkonen

Abstract

This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a functional coefficient autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first order generalized autoregressive conditional heteroskedasticity (GARCH (1,1)) model. Strong consistency and asymptotic normality of the global Gaussian quasi maximum likelihood (QML) estimator are established under conditions comparable to those recently used in the corresponding linear case. To the best of our knowledge, this paper provides the first results on consistency and asymptotic normality of the QML estimator in nonlinear autoregressive models with GARCH errors.

Suggested Citation

  • Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:396
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:c9981b55-5ac4-46eb-b7a4-ba7f975b6568
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    2. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    3. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    4. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    5. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    6. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    7. Escanciano, Juan Carlos, 2009. "Quasi-Maximum Likelihood Estimation Of Semi-Strong Garch Models," Econometric Theory, Cambridge University Press, vol. 25(2), pages 561-570, April.
    8. Ling, Shiqing, 2007. "Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models," Journal of Econometrics, Elsevier, vol. 140(2), pages 849-873, October.
    9. Kristensen Dennis & Rahbek Anders, 2009. "Asymptotics of the QMLE for Non-Linear ARCH Models," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-38, April.
    10. Kristensen, Dennis & Rahbek, Anders, 2005. "ASYMPTOTICS OF THE QMLE FOR A CLASS OF ARCH(q) MODELS," Econometric Theory, Cambridge University Press, vol. 21(5), pages 946-961, October.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. White, Halbert, 1980. "Nonlinear Regression on Cross-Section Data," Econometrica, Econometric Society, vol. 48(3), pages 721-746, April.
    14. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    15. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
    16. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
    17. Tjøstheim, Dag, 1986. "Estimation in nonlinear time series models," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 251-273, February.
    18. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    19. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    21. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    22. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    23. González-Rivera Gloria, 1998. "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-20, July.
    24. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    25. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    26. Francq, Christian & Zakoian, Jean-Michel, 2007. "Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to zero," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1265-1284, September.
    27. J. Pfanzagl, 1969. "On the measurability and consistency of minimum contrast estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 14(1), pages 249-272, December.
    28. Theis Lange & Anders Rahbek & Søren Tolver Jensen, 2011. "Estimation and Asymptotic Inference in the AR-ARCH Model," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 129-153.
    29. Francq, Christian & Zakoïan, Jean-Michel, 2006. "Mixing Properties Of A General Class Of Garch(1,1) Models Without Moment Assumptions On The Observed Process," Econometric Theory, Cambridge University Press, vol. 22(5), pages 815-834, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Dong & Ling, Shiqing & Zakoïan, Jean-Michel, 2015. "Asymptotic inference in multiple-threshold double autoregressive models," Journal of Econometrics, Elsevier, vol. 189(2), pages 415-427.
    2. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
    3. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    4. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
    5. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    6. Matthias R. Fengler & Alexander Melnikov, 2018. "GARCH option pricing models with Meixner innovations," Review of Derivatives Research, Springer, vol. 21(3), pages 277-305, October.
    7. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
    8. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    9. Annastiina Silvennoinen & Timo Ter�svirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    10. Dong Li & Shiqing Ling & Jean-Michel Zakoian, 2013. "Asymptotic Inference in Multiple-Threshold Nonlinear Time Series Models," Working Papers 2013-51, Center for Research in Economics and Statistics.
    11. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    12. KIlIç, Rehim, 2011. "Long memory and nonlinearity in conditional variances: A smooth transition FIGARCH model," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 368-378, March.
    13. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    14. Lambert, Philippe & Laurent, Sébastien & Veredas, David, 2012. "Testing conditional asymmetry: A residual-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1229-1247.
    15. Chorro, Christophe & Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2018. "Testing for leverage effects in the returns of US equities," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 290-306.
    16. Haejune Oh & Sangyeol Lee, 2019. "Modified residual CUSUM test for location-scale time series models with heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1059-1091, October.
    17. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2017. "Testing for Leverage Effects in the Returns of US Equities," Post-Print halshs-00973922, HAL.
    18. Sun, Mucun & Feng, Cong & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization," Applied Energy, Elsevier, vol. 238(C), pages 1497-1505.
    19. Lee, Sangyeol & Oh, Haejune, 2015. "Entropy test and residual empirical process for autoregressive conditional duration models," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 1-12.
    20. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effect in Financial Returns," Documents de travail du Centre d'Economie de la Sorbonne 14022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    2. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    3. Halunga, Andreea G. & Orme, Chris D., 2009. "First-Order Asymptotic Theory For Parametric Misspecification Tests Of Garch Models," Econometric Theory, Cambridge University Press, vol. 25(2), pages 364-410, April.
    4. Emma M. Iglesias & Garry D. A. Phillips, 2012. "Estimation, Testing, and Finite Sample Properties of Quasi-Maximum Likelihood Estimators in GARCH-M Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 532-557, September.
    5. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    6. Kristensen Dennis & Rahbek Anders, 2009. "Asymptotics of the QMLE for Non-Linear ARCH Models," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-38, April.
    7. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    8. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    9. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    10. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    11. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    12. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    13. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    14. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    15. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    16. Christian Francq & Jean-Michel Zakoïan, 2008. "A Tour in the Asymptotic Theory of GARCH Estimation," Working Papers 2008-03, Center for Research in Economics and Statistics.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    18. Díaz-Hernández, Adán & Constantinou, Nick, 2019. "A multiple regime extension to the Heston–Nandi GARCH(1,1) model," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 162-180.
    19. Li, Dong & Li, Muyi & Wu, Wuqing, 2014. "On dynamics of volatilities in nonstationary GARCH models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 86-90.
    20. Chuffart Thomas & Flachaire Emmanuel & Péguin-Feissolle Anne, 2018. "Testing for misspecification in the short-run component of GARCH-type models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-17, December.

    More about this item

    Keywords

    AR-GARCH; Asymptotic normality; Consistency; Nonlinear time series; Quasi maximum likelihood estimation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.