Likelihood Evaluation of High-Dimensional Spatial Latent Gaussian Models with Non-Gaussian Response Variables
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jung, Robert C. & Liesenfeld, Roman & Richard, Jean-François, 2011.
"Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 73-85.
- Jung, Robert & Liesenfeld, Roman & Richard, Jean-François, 2008. "Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity," Economics Working Papers 2008-12, Christian-Albrechts-University of Kiel, Department of Economics.
- Roman Liesenfeld & Jean-Francois Richard, 2006.
"Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 335-360.
- Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
- Robert C. Jung & Roman Liesenfeld & Jean-François Richard, 2011.
"Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 73-85, January.
- Jung, Robert & Liesenfeld, Roman & Richard, Jean-François, 2008. "Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity," Economics Working Papers 2008-12, Christian-Albrechts-University of Kiel, Department of Economics.
- Denis Bolduc & Bernard Fortin & Stephen Gordon, 1997.
"Multinomial Probit Estimation of Spatially Interdependent Choices: An Empirical Comparison of Two New Techniques,"
International Regional Science Review, , vol. 20(1-2), pages 77-101, April.
- Bolduc, D. & Fortin, B. & Gordon, S., 1995. "Multinomial Probit Estimation of Spatially Interdependent Choices: An Empirical Comparison of Two New Techniques," Papers 9508, Laval - Recherche en Politique Economique.
- BOLDUC, Denis & FORTIN, Bernard & GORDON, Stephen, 1995. "Multinomial Probit Estimation of Spatially Interdependent Choices: an Empirical Comparison of Two New Techniques," Cahiers de recherche 9508, Université Laval - Département d'économique.
- Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
- Heijnen, P. & Samarina, A.. & Jacobs, J.P.A.M. & Elhorst, J.P., 2013. "State transfers at different moments in time," Research Report 13006-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
- Buczkowska, Sabina & de Lapparent, Matthieu, 2014.
"Location choices of newly created establishments: Spatial patterns at the aggregate level,"
Regional Science and Urban Economics, Elsevier, vol. 48(C), pages 68-81.
- Sabina Buczkowska & Matthieu de Lapparent, 2014. "Location choices of newly created establishments: spatial patterns at the aggregate level," ERSA conference papers ersa14p940, European Regional Science Association.
- Wang, Honglin & Iglesias, Emma M. & Wooldridge, Jeffrey M., 2013. "Partial maximum likelihood estimation of spatial probit models," Journal of Econometrics, Elsevier, vol. 172(1), pages 77-89.
- Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
- Bauwens, L. & Galli, F., 2009.
"Efficient importance sampling for ML estimation of SCD models,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
- Luc, BAUWENS & Fausto Galli, 2007. "Efficient importance sampling for ML estimation of SCD models," Discussion Papers (ECON - Département des Sciences Economiques) 2007032, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & GALLI, Fausto, 2009. "Efficient importance sampling for ML estimation of SCD models," LIDAM Reprints CORE 2088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & GALLI, Fausto, 2007. "Efficient importance sampling for ML estimation of SCD models," LIDAM Discussion Papers CORE 2007053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Xiaokun Wang & Kara M. Kockelman, 2009. "Baysian Inference For Ordered Response Data With A Dynamic Spatial‐Ordered Probit Model," Journal of Regional Science, Wiley Blackwell, vol. 49(5), pages 877-913, December.
- Lambert, Dayton M. & Brown, Jason P. & Florax, Raymond J.G.M., 2010.
"A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application,"
Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 241-252, July.
- Lambert, Dayton M. & Brown, Jason P. & Florax, Raymond J.G.M., 2010. "A Two-Step Estimator For A Spatial Lag Model Of Counts: Theory, Small Sample Performance And An Application," Working papers 59780, Purdue University, Department of Agricultural Economics.
- Dayton M. Lambert & Jason P. Brown & Raymond J.G.M. Florax, 2010. "A Two-Step Estimator For A Spatial Lag Model Of Counts: Theory, Small Sample Performance And An Application," Working Papers 10-5, Purdue University, College of Agriculture, Department of Agricultural Economics.
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
- Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
- repec:dgr:rugsom:13006-eef is not listed on IDEAS
- James P. LeSage & Manfred M. Fischer & Thomas Scherngell, 2007. "Knowledge spillovers across Europe: Evidence from a Poisson spatial interaction model with spatial effects," Papers in Regional Science, Wiley Blackwell, vol. 86(3), pages 393-421, August.
- Roman Liesenfeld & Guilherme V. Moura & Jean-François Richard & Hariharan Dharmarajan, 2013.
"Efficient Likelihood Evaluation of State-Space Representations,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 538-567.
- David N. DeJong & Hariharan Dharmarajan & Roman Liesenfeld & Guilherme Moura & Jean-Francois Richard, 2009. "Efficient Likelihood Evaluation of State-Space Representations," Working Papers 2009/15, Czech National Bank.
- DeJong, David Neil & Dharmarajan, Hariharan & Liesenfeld, Roman & Moura, Guilherme V. & Richard, Jean-François, 2009. "Efficient likelihood evaluation of state-space representations," Economics Working Papers 2009-02, Christian-Albrechts-University of Kiel, Department of Economics.
- Christian M. Hafner & Hans Manner, 2012.
"Dynamic stochastic copula models: estimation, inference and applications,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 269-295, March.
- Hafner, C.M. & Manner, H., 2008. "Dynamic stochastic copula models: estimation, inference and applications," Research Memorandum 043, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Hafner, Christian & Manner H., 2012. "Dynamic stochastic copula models: Estimation, inference and applications," LIDAM Reprints ISBA 2012022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kurt J. Beron & Wim P. M. Vijverberg, 2004. "Probit in a Spatial Context: A Monte Carlo Analysis," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 8, pages 169-195, Springer.
- Rainer Winkelmann & Stefan Boes, 2006. "Analysis of Microdata," Springer Books, Springer, number 978-3-540-29607-2, April.
- Lee, Lung-Fei, 1997.
"Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results,"
Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
- Lee, L.F., 1994. "Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models--Some Monte Carlo Results," Papers 94-06, Michigan - Center for Research on Economic & Social Theory.
- Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
- Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
- Roman Liesenfeld & Guilherme Valle Moura & Jean‐François Richard, 2010.
"Determinants and Dynamics of Current Account Reversals: An Empirical Analysis,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 486-517, August.
- Liesenfeld, Roman & Moura, Guilherme V. & Richard, Jean-François, 2009. "Determinants and dynamics of current account reversals: an empirical analysis," Economics Working Papers 2009-04, Christian-Albrechts-University of Kiel, Department of Economics.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2015.
"Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2011. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 11-057/4, Tinbergen Institute, revised 27 Jan 2012.
- Manfred M. Fischer & Peter Nijkamp (ed.), 2014. "Handbook of Regional Science," Springer Books, Springer, edition 127, number 978-3-642-23430-9, April.
- Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roman Liesenfeld & Jean‐François Richard & Jan Vogler, 2017.
"Likelihood‐Based Inference and Prediction in Spatio‐Temporal Panel Count Models for Urban Crimes,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 600-620, April.
- Vogler, Jan & Liesenfeld, Roman & Richard, Jean-Francois, 2015. "Likelihood based inference and prediction in spatio-temporal panel count models for urban crimes," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113131, Verein für Socialpolitik / German Economic Association.
- Bekierman Jeremias & Gribisch Bastian, 2016. "Estimating stochastic volatility models using realized measures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 279-300, June.
- Sabina Buczkowska & Nicolas Coulombel & Matthieu Lapparent, 2019.
"A comparison of Euclidean Distance, Travel Times, and Network Distances in Location Choice Mixture Models,"
Networks and Spatial Economics, Springer, vol. 19(4), pages 1215-1248, December.
- Sabina Buczkowska & Nicolas Coulombel & Matthieu de Lapparent, 2019. "A comparison of Euclidean Distance, Travel Times, and Network Distances in Location Choice Mixture Models," Post-Print hal-02392996, HAL.
- Jean-François Richard, 2015. "Likelihood Based Inference and Prediction in Spatio-temporal Panel Count Models for Urban Crimes," Working Paper 5657, Department of Economics, University of Pittsburgh.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
- Liesenfeld, Roman & Richard, Jean-François & Vogler, Jan, 2013. "Analysis of discrete dependent variable models with spatial correlation," Economics Working Papers 2013-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
- J. Paul Elhorst & Pim Heijnen & Anna Samarina & Jan P. A. M. Jacobs, 2017. "Transitions at Different Moments in Time: A Spatial Probit Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 422-439, March.
- Tore Selland KLEPPE & Jun YU & Hans J. SKAUG, 2009.
"Stimulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models,"
Working Papers
20-2009, Singapore Management University, School of Economics.
- Tore Selland Kleppe & Hans J. Skaug & Jun Yu, 2009. "Simulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers CoFie-09-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
- Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022.
"Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
- Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian Estimation of Multivariate Panel Probits with Higher-order Network Interdependence and an Application to Firms' Global Market Participation in Guangdong," Center for Policy Research Working Papers 247, Center for Policy Research, Maxwell School, Syracuse University.
- Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian Estimation of Multivariate Panel Probits with Higher-Order Network Interdependence and an Application to Firms' Global Market Participation in Guangdong," CESifo Working Paper Series 9579, CESifo.
- Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
- Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
- Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
- Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
- Tore Selland Kleppe & Jun Yu & H.J. Skaug, 2010.
"Simulated maximum likelihood estimation of continuous time stochastic volatility models,"
Advances in Econometrics, in: Maximum Simulated Likelihood Methods and Applications, pages 137-161,
Emerald Group Publishing Limited.
- Tore Selland Kleppe & Hans J. Skaug & Jun Yu, 2009. "Simulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers CoFie-09-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Tore Selland KLEPPE & Jun YU & Hans J. SKAUG, 2009. "Stimulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers 20-2009, Singapore Management University, School of Economics.
- Silveira Santos, Luís & Proença, Isabel, 2019.
"The inversion of the spatial lag operator in binary choice models: Fast computation and a closed formula approximation,"
Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 74-102.
- Luís Silveira Santos & Isabel Proença, 2017. "The Inversion of the Spatial Lag Operator in Binary Choice Models: Fast Computation and a Closed Formula Approximation," Working Papers REM 2017/11, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Heijnen, P. & Samarina, A.. & Jacobs, J.P.A.M. & Elhorst, J.P., 2013. "State transfers at different moments in time," Research Report 13006-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
- repec:dgr:rugsom:13006-eef is not listed on IDEAS
- Anping Chen & Marlon Boarnet & Mark Partridge & Raffaella Calabrese & Johan A. Elkink, 2014.
"Estimators Of Binary Spatial Autoregressive Models: A Monte Carlo Study,"
Journal of Regional Science, Wiley Blackwell, vol. 54(4), pages 664-687, September.
- Raffaella Calabrese & Johan A. Elkink, 2012. "Estimators of Binary Spatial Autoregressive Models: A Monte Carlo Study," Working Papers 201215, Geary Institute, University College Dublin.
- Anna Gloria Billé & Samantha Leorato, 2017. "Quasi-ML estimation, Marginal Effects and Asymptotics for Spatial Autoregressive Nonlinear Models," BEMPS - Bozen Economics & Management Paper Series BEMPS44, Faculty of Economics and Management at the Free University of Bozen.
- Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011-11, Christian-Albrechts-University of Kiel, Department of Economics.
- repec:asg:wpaper:1048 is not listed on IDEAS
- Roman Liesenfeld & Guilherme Valle Moura & Jean‐François Richard, 2010.
"Determinants and Dynamics of Current Account Reversals: An Empirical Analysis,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 486-517, August.
- Liesenfeld, Roman & Moura, Guilherme V. & Richard, Jean-François, 2009. "Determinants and dynamics of current account reversals: an empirical analysis," Economics Working Papers 2009-04, Christian-Albrechts-University of Kiel, Department of Economics.
- Falk Bräuning & Siem Jan Koopman, 2016.
"The dynamic factor network model with an application to global credit risk,"
Working Papers
16-13, Federal Reserve Bank of Boston.
- Falk Bräuning & Siem Jan Koopman, 2016. "The Dynamic Factor Network Model with an Application to Global Credit-Risk," Tinbergen Institute Discussion Papers 16-105/III, Tinbergen Institute.
- Mesters, G. & Koopman, S.J., 2014.
"Generalized dynamic panel data models with random effects for cross-section and time,"
Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
- Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2016-02-29 (Computational Economics)
- NEP-ECM-2016-02-29 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pit:wpaper:5778. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Department of Economics, University of Pittsburgh (email available below). General contact details of provider: https://edirc.repec.org/data/depghus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.