IDEAS home Printed from https://ideas.repec.org/a/bla/jregsc/v49y2009i5p877-913.html
   My bibliography  Save this article

Baysian Inference For Ordered Response Data With A Dynamic Spatial‐Ordered Probit Model

Author

Listed:
  • Xiaokun Wang
  • Kara M. Kockelman

Abstract

ABSTRACT Many databases involve ordered discrete responses in a temporal and spatial context, including, for example, land development intensity levels, vehicle ownership, and pavement conditions. An appreciation of such behaviors requires rigorous statistical methods, recognizing spatial effects and dynamic processes. This study develops a dynamic spatial‐ordered probit (DSOP) model in order to capture patterns of spatial and temporal autocorrelation in ordered categorical response data. This model is estimated in a Bayesian framework using Gibbs sampling and data augmentation, in order to generate all autocorrelated latent variables. It incorporates spatial effects in an ordered probit model by allowing for interregional spatial interactions and heteroskedasticity, along with random effects across regions or any clusters of observational units. The model assumes an autoregressive, AR(1), process across latent response values, thereby recognizing time‐series dynamics in panel data sets. The model code and estimation approach is tested on simulated data sets, in order to reproduce known parameter values and provide insights into estimation performance, yielding much more accurate estimates than standard, nonspatial techniques. The proposed and tested DSOP model is felt to be a significant contribution to the field of spatial econometrics, where binary applications (for discrete response data) have been seen as the cutting edge. The Bayesian framework and Gibbs sampling techniques used here permit such complexity, in world of two‐dimensional autocorrelation.

Suggested Citation

  • Xiaokun Wang & Kara M. Kockelman, 2009. "Baysian Inference For Ordered Response Data With A Dynamic Spatial‐Ordered Probit Model," Journal of Regional Science, Wiley Blackwell, vol. 49(5), pages 877-913, December.
  • Handle: RePEc:bla:jregsc:v:49:y:2009:i:5:p:877-913
    DOI: 10.1111/j.1467-9787.2009.00622.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9787.2009.00622.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9787.2009.00622.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    2. Gadi Barlevy & H. N. Nagaraja, 2006. "Identification of Search Models with Initial Condition Problems," 2006 Meeting Papers 4, Society for Economic Dynamics.
    3. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    4. McMillen, Daniel P. & McDonald, John F., 1998. "Suburban Subcenters and Employment Density in Metropolitan Chicago," Journal of Urban Economics, Elsevier, vol. 43(2), pages 157-180, March.
    5. Gerald C. Nelson & Daniel Hellerstein, 1997. "Do Roads Cause Deforestation? Using Satellite Images in Econometric Analysis of Land Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 80-88.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    7. Manuel Arellano & Jinyong Hahn, 2005. "Understanding Bias in Nonlinear Panel Models: Some Recent Developments," Working Papers wp2005_0507, CEMFI.
    8. Richard Paap & Philip Hans Franses, 2000. "A dynamic multinomial probit model for brand choice with different long-run and short-run effects of marketing-mix variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 717-744.
    9. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    10. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    11. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    12. Anselin, Luc & Hudak, Sheri, 1992. "Spatial econometrics in practice : A review of software options," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 509-536, September.
    13. Bester, C. Alan & Hansen, Christian, 2009. "A Penalty Function Approach to Bias Reduction in Nonlinear Panel Models with Fixed Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 131-148.
    14. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schanne, Norbert, 2012. "The formation of experts' expectations on labour markets : do they run with the pack?," IAB-Discussion Paper 201225, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    2. Jean-François Richard, 2015. "Likelihood Evaluation of High-Dimensional Spatial Latent Gaussian Models with Non-Gaussian Response Variables," Working Paper 5778, Department of Economics, University of Pittsburgh.
    3. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    4. J. Paul Elhorst & Pim Heijnen & Anna Samarina & Jan P. A. M. Jacobs, 2017. "Transitions at Different Moments in Time: A Spatial Probit Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 422-439, March.
    5. Arbia, Giuseppe, 2016. "Spatial Econometrics: A Broad View," Foundations and Trends(R) in Econometrics, now publishers, vol. 8(3-4), pages 145-265, November.
    6. Feng Li & Guangdong Li & Weishan Qin & Jing Qin & Haitao Ma, 2018. "Identifying Economic Growth Convergence Clubs and Their Influencing Factors in China," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    7. Daniel P. McMillen & Elizabeth T. Powers, 2017. "The eldercare landscape: Evidence from California," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 139-157, September.
    8. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
    9. Wang, Yiyi & Kockelman, Kara M. & Wang, Xiaokun (Cara), 2013. "Understanding spatial filtering for analysis of land use-transport data," Journal of Transport Geography, Elsevier, vol. 31(C), pages 123-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    2. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    3. Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
    4. Galvao Jr, A. F. & Montes-Rojas, G., 2009. "Instrumental variables quantile regression for panel data with measurement errors," Working Papers 09/06, Department of Economics, City University London.
    5. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m052g20qh is not listed on IDEAS
    6. Iván Fernández-Val & Martin Weidner, 2018. "Fixed Effects Estimation of Large-TPanel Data Models," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 109-138, August.
    7. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    8. Martin Woerter, 2014. "Competition and Persistence of R&D," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 23(5-6), pages 469-489, September.
    9. Carrión-Flores, Carmen E. & Flores-Lagunes, Alfonso & Guci, Ledia, 2018. "An estimator for discrete-choice models with spatial lag dependence using large samples, with an application to land-use conversions," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 77-93.
    10. Maurice J.G. Bun & Martin A. Carree & Artūras Juodis, 2017. "On Maximum Likelihood Estimation of Dynamic Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 463-494, August.
    11. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    12. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.
    13. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    14. Roman Liesenfeld & Guilherme Valle Moura & Jean‐François Richard, 2010. "Determinants and Dynamics of Current Account Reversals: An Empirical Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 486-517, August.
    15. Lee, Yoonseok, 2012. "Bias in dynamic panel models under time series misspecification," Journal of Econometrics, Elsevier, vol. 169(1), pages 54-60.
    16. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    17. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    18. Alexander Chudik & M. Hashem Pesaran & Jui‐Chung Yang, 2018. "Half‐panel jackknife fixed‐effects estimation of linear panels with weakly exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 816-836, September.
    19. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    20. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    21. Monteiro, Jose-Antonio, 2010. "Eco-label Adoption in an Interdependent World," MPRA Paper 20268, University Library of Munich, Germany.
    22. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    23. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2023. "Conditional inference and bias reduction for partial effects estimation of fixed-effects logit models," Empirical Economics, Springer, vol. 64(5), pages 2257-2290, May.
    24. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jregsc:v:49:y:2009:i:5:p:877-913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0022-4146 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.