IDEAS home Printed from https://ideas.repec.org/p/skb/wpaper/cofie-09-2009.html
   My bibliography  Save this paper

Simulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models

Author

Listed:
  • Tore Selland Kleppe

    (University of Bergen)

  • Hans J. Skaug

    (University of Bergen)

  • Jun Yu

    (Sim Kee Boon Institute for Financial Economics, Singapore Management University)

Abstract

In this paper we develop and implement a method for maximum simulated likelihood estimation of the continuous time stochastic volatility model with the constant elasticity of volatility. The approach do not require observations on option prices nor volatility. To integrate out latent volatility from the joint density of return and volatility, a modi ed ecient importance sampling technique is used after the continuous time model is approximated using the Euler-Maruyama scheme. The Monte Carlo studies show that the method works well and the empirical applications illustrate usefulness of the method. Empirical results provide strong evidence against the Heston model.

Suggested Citation

  • Tore Selland Kleppe & Hans J. Skaug & Jun Yu, 2009. "Simulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers CoFie-09-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
  • Handle: RePEc:skb:wpaper:cofie-09-2009
    as

    Download full text from publisher

    File URL: http://www.smu.edu.sg/institutes/skbife/downloads/CoFiE/Working%20Papers/Simulated%20Maximum%20Likelihood%20Estimation%20of%20Continuous%20Time%20Stochastic%20Volatility%20Models.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roman Liesenfeld & Jean-Francois Richard, 2006. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 335-360.
    2. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    7. Hiroyuki Kawakatsu, 2007. "Numerical integration-based Gaussian mixture filters for maximum likelihood estimation of asymmetric stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 342-358, July.
    8. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    9. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    10. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    11. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
    12. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    13. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
    14. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    15. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu Wei-Fang, 2013. "Maximum likelihood estimation of continuous time stochastic volatility models with partially observed GARCH," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 421-438, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tore Selland Kleppe & Jun Yu & Hans J. skaug, 2011. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 10-2011, Singapore Management University, School of Economics.
    2. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    3. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    4. Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
    5. Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
    6. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    7. Wan, Xiangwei & Yang, Nian, 2021. "Hermite expansion of transition densities and European option prices for multivariate diffusions with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    8. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    9. Aït-Sahalia, Yacine & Amengual, Dante & Manresa, Elena, 2015. "Market-based estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 187(2), pages 418-435.
    10. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    11. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011-11, Christian-Albrechts-University of Kiel, Department of Economics.
    12. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    13. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    14. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
    15. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    16. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    17. Xinyu WU & Hailin ZHOU, 2016. "GARCH DIFFUSION MODEL, iVIX, AND VOLATILITY RISK PREMIUM," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(1), pages 327-342.
    18. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    19. Jun Yu, 2004. "Asymmetric Response of Volatility: Evidence from Stochastic Volatility Models and Realized Volatility," Working Papers 24-2004, Singapore Management University, School of Economics.
    20. Huang Xiao, 2013. "Quasi-maximum likelihood estimation of multivariate diffusions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 179-197, April.

    More about this item

    Keywords

    Efficient importance sampler; Constant elasticity of volatility;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:skb:wpaper:cofie-09-2009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jaymie Xu (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.