IDEAS home Printed from https://ideas.repec.org/a/bla/jregsc/v54y2014i4p664-687.html
   My bibliography  Save this article

Estimators Of Binary Spatial Autoregressive Models: A Monte Carlo Study

Author

Listed:
  • Anping Chen
  • Marlon Boarnet
  • Mark Partridge
  • Raffaella Calabrese
  • Johan A. Elkink

Abstract

type="main"> The goal of this paper is to provide a cohesive description and a critical comparison of the main estimators proposed in the literature for spatial binary choice models. The properties of such estimators are investigated using a theoretical and simulation study, followed by an empirical application. To the authors' knowledge, this is the first paper that provides a comprehensive Monte Carlo study of the estimators' properties. This simulation study shows that the Gibbs estimator performs best for low spatial autocorrelation, while the recursive importance sampler performs best for high spatial autocorrelation. The same results are obtained by increasing the sample size. Finally, the linearized general method of moments estimator is the fastest algorithm that provides accurate estimates for low spatial autocorrelation and large sample size.

Suggested Citation

  • Anping Chen & Marlon Boarnet & Mark Partridge & Raffaella Calabrese & Johan A. Elkink, 2014. "Estimators Of Binary Spatial Autoregressive Models: A Monte Carlo Study," Journal of Regional Science, Wiley Blackwell, vol. 54(4), pages 664-687, September.
  • Handle: RePEc:bla:jregsc:v:54:y:2014:i:4:p:664-687
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jors.12116
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Denis Bolduc & Bernard Fortin & Stephen Gordon, 1997. "Multinomial Probit Estimation of Spatially Interdependent Choices: An Empirical Comparison of Two New Techniques," International Regional Science Review, , vol. 20(1-2), pages 77-101, April.
    4. Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey, 2004. "Econometrics for Spatial Models: Recent Advances," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 1, pages 1-25, Springer.
    5. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    6. Kurt J. Beron & James C. Murdoch & Wim P. M. Vijverberg, 2003. "Why Cooperate? Public Goods, Economic Power, and the Montreal Protocol," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 286-297, May.
    7. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    8. Corinne Autant-Bernard, 2006. "Where Do Firms Choose to Locate Their R&D? A Spatial Conditional Logit Analysis on French Data," European Planning Studies, Taylor & Francis Journals, vol. 14(9), pages 1187-1208, May.
    9. Craig Volden, 2006. "States as Policy Laboratories: Emulating Success in the Children's Health Insurance Program," American Journal of Political Science, John Wiley & Sons, vol. 50(2), pages 294-312, April.
    10. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    11. Marco Bee & Giuseppe Espa, 2008. "A Monte Carlo EM algorithm for the estimation of a logistic auto-logistic model with missing data," Letters in Spatial and Resource Sciences, Springer, vol. 1(1), pages 45-54, July.
    12. Gleditsch, Kristian Skrede & Ward, Michael D., 2006. "Diffusion and the International Context of Democratization," International Organization, Cambridge University Press, vol. 60(4), pages 911-933, October.
    13. Franzese, Robert J. & Hays, Jude C., 2007. "Spatial Econometric Models of Cross-Sectional Interdependence in Political Science Panel and Time-Series-Cross-Section Data," Political Analysis, Cambridge University Press, vol. 15(2), pages 140-164, April.
    14. Olivier Parent & James Lesage, 2005. "Bayesian Model Averaging for Spatial Econometric Models," Post-Print hal-00375489, HAL.
    15. Klier, Thomas & McMillen, Daniel P, 2008. "Clustering of Auto Supplier Plants in the United States," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 460-471.
    16. Alfonso Flores‐Lagunes & Kurt Erik Schnier, 2012. "Estimation of sample selection models with spatial dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 173-204, March.
    17. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    18. L Anselin, 1982. "A Note on Small Sample Properties of Estimators in a First-Order Spatial Autoregressive Model," Environment and Planning A, , vol. 14(8), pages 1023-1030, August.
    19. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    20. Mark M. Fleming, 2004. "Techniques for Estimating Spatially Dependent Discrete Choice Models," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 7, pages 145-168, Springer.
    21. Charles R. Shipan & Craig Volden, 2006. "Bottom‐Up Federalism: The Diffusion of Antismoking Policies from U.S. Cities to States," American Journal of Political Science, John Wiley & Sons, vol. 50(4), pages 825-843, October.
    22. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    23. Chesher, Andrew & Irish, Margaret, 1987. "Residual analysis in the grouped and censored normal linear model," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 33-61.
    24. Case, Anne, 1992. "Neighborhood influence and technological change," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 491-508, September.
    25. Álvaro A. Novo, 2003. "Contagious Currency Crisis: A Spatial Probit Approach," Working Papers w200305, Banco de Portugal, Economics and Research Department.
    26. Robin Dubin, 1995. "Estimating Logit Models with Spatial Dependence," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax (ed.), New Directions in Spatial Econometrics, chapter 10, pages 229-242, Springer.
    27. Kurt J. Beron & Wim P. M. Vijverberg, 2004. "Probit in a Spatial Context: A Monte Carlo Analysis," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 8, pages 169-195, Springer.
    28. James P. LeSage & R. Kelley Pace & Nina Lam & Richard Campanella & Xingjian Liu, 2011. "New Orleans business recovery in the aftermath of Hurricane Katrina," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(4), pages 1007-1027, October.
    29. Jan K. Brueckner, 2003. "Strategic Interaction Among Governments: An Overview of Empirical Studies," International Regional Science Review, , vol. 26(2), pages 175-188, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    2. Tamás Krisztin & Philipp Piribauer, 2021. "A Bayesian spatial autoregressive logit model with an empirical application to European regional FDI flows," Empirical Economics, Springer, vol. 61(1), pages 231-257, July.
    3. Jong Wook Lee & So Young Sohn, 2021. "Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-11, December.
    4. Wucherpfennig, Julian & Kachi, Aya & Bormann, Nils-Christian & Hunziker, Philipp, 2018. "Estimating Interdependence Across Space, Time and Outcomes in Binary Choice Models Using Pseudo Maximum Likelihood Estimators," Working papers 2018/11, Faculty of Business and Economics - University of Basel.
    5. Corral, Paul & Radchenko, Natalia, 2017. "What’s So Spatial about Diversification in Nigeria?," World Development, Elsevier, vol. 95(C), pages 231-253.
    6. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    7. Li, Bolun & Sickles, Robin C. & Williams, Jenny, 2019. "Estimating Peer Effects on Career Choice: A Spatial Multinomial Logit Approach," Working Papers 19-001, Rice University, Department of Economics.
    8. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    9. Dorian Balvir, 2024. "Fiscal rules: the imitation game," Applied Economics, Taylor & Francis Journals, vol. 56(6), pages 708-727, February.
    10. Piras, Gianfranco & Sarrias, Mauricio, 2023. "One or two-step? Evaluating GMM efficiency for spatial binary probit models," Journal of choice modelling, Elsevier, vol. 48(C).
    11. Hanqiao Zhang, 2024. "Exit Spillovers of Foreign-invested Enterprises in Shenzhen's Electronics Manufacturing Industry," Papers 2404.18009, arXiv.org.
    12. Calabrese, Raffaella, 2023. "Contagion effects of UK small business failures: A spatial hierarchical autoregressive model for binary data," European Journal of Operational Research, Elsevier, vol. 305(2), pages 989-997.
    13. Chandra Bhat, 2015. "A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation," Transportation, Springer, vol. 42(5), pages 879-914, September.
    14. Bolun Li & Robin Sickles & Jenny Williams, 2020. "Estimating Peer Effects on Career Choice: A Spatial Multinomial Logit Approach," Advances in Econometrics, in: Essays in Honor of Cheng Hsiao, volume 41, pages 359-381, Emerald Group Publishing Limited.
    15. Nikolic, Adriana & Weiss, Christoph, 2014. "Spatial interactions in location decisions: Empirical evidence from a Bayesian spatial probit model," Department of Economics Working Paper Series 177, WU Vienna University of Economics and Business.
    16. Wei Cheng, 2022. "Consistent EM algorithm for a spatial autoregressive probit model," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-23, December.
    17. Virgilio Gómez-Rubio & Roger S. Bivand & Håvard Rue, 2021. "Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation," Mathematics, MDPI, vol. 9(17), pages 1-23, August.
    18. Samuel Brazys & Johan A. Elkink & Gina Kelly, 2017. "Bad neighbors? How co-located Chinese and World Bank development projects impact local corruption in Tanzania," The Review of International Organizations, Springer, vol. 12(2), pages 227-253, June.
    19. Doris Läpple & Garth Holloway & Donald J Lacombe & Cathal O’Donoghue, 2017. "Sustainable technology adoption: a spatial analysis of the Irish Dairy Sector," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(5), pages 810-835.
    20. Raffaella Calabrese & Galina Andreeva & Jake Ansell, 2019. "“Birds of a Feather” Fail Together: Exploring the Nature of Dependency in SME Defaults," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 71-84, January.
    21. Adjognon, Serge & Liverpool-Tasie, Lenis Saweda O., 2014. "Spatial Dependence in the Adoption of the Urea Deep Placement for Rice Production in Niger State, Nigeria: A Bayesian Spatial Autoregressive Probit Estimation Approach," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170515, Agricultural and Applied Economics Association.
    22. Raffaella Calabrese & Johan A. Elkink & Paolo S. Giudici, 2017. "Measuring bank contagion in Europe using binary spatial regression models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1503-1511, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heijnen, P. & Samarina, A.. & Jacobs, J.P.A.M. & Elhorst, J.P., 2013. "State transfers at different moments in time," Research Report 13006-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    2. repec:dgr:rugsom:13006-eef is not listed on IDEAS
    3. Anna Gloria Billé & Samantha Leorato, 2017. "Quasi-ML estimation, Marginal Effects and Asymptotics for Spatial Autoregressive Nonlinear Models," BEMPS - Bozen Economics & Management Paper Series BEMPS44, Faculty of Economics and Management at the Free University of Bozen.
    4. J. Paul Elhorst & Pim Heijnen & Anna Samarina & Jan P. A. M. Jacobs, 2017. "Transitions at Different Moments in Time: A Spatial Probit Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 422-439, March.
    5. repec:asg:wpaper:1048 is not listed on IDEAS
    6. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    7. Raffaella Calabrese & Johan A. Elkink & Paolo S. Giudici, 2017. "Measuring bank contagion in Europe using binary spatial regression models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1503-1511, December.
    8. Anna Gloria Billé, 2013. "Computational Issues in the Estimation of the Spatial Probit Model: A Comparison of Various Estimators," The Review of Regional Studies, Southern Regional Science Association, vol. 43(2,3), pages 131-154, Winter.
    9. Piras, Gianfranco & Sarrias, Mauricio, 2023. "One or two-step? Evaluating GMM efficiency for spatial binary probit models," Journal of choice modelling, Elsevier, vol. 48(C).
    10. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    11. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.
    12. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    13. Corral, Paul & Radchenko, Natalia, 2017. "What’s So Spatial about Diversification in Nigeria?," World Development, Elsevier, vol. 95(C), pages 231-253.
    14. Silveira Santos, Luís & Proença, Isabel, 2019. "The inversion of the spatial lag operator in binary choice models: Fast computation and a closed formula approximation," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 74-102.
    15. LE GALLO, Julie, 2000. "Econométrie spatiale 1 -Autocorrélation spatiale," LATEC - Document de travail - Economie (1991-2003) 2000-05, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    16. repec:asg:wpaper:1013 is not listed on IDEAS
    17. Luo, Shali & Miller, J. Isaac, 2014. "On the spatial correlation of international conflict initiation and other binary and dyadic dependent variables," Regional Science and Urban Economics, Elsevier, vol. 44(C), pages 107-118.
    18. Di Porto Edoardo & Revelli Federico, 2009. "Central Command, Local Hazard and the Race to the Top," Department of Economics and Statistics Cognetti de Martiis. Working Papers 200909, University of Turin.
    19. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    20. Di Porto Edoardo & Revelli Federico, 2009. "Central Command, Local Hazard and the Race to the Top," Department of Economics and Statistics Cognetti de Martiis. Working Papers 200909, University of Turin.
    21. Klaus Glenk & Robert J. Johnston & Jürgen Meyerhoff & Julian Sagebiel, 2020. "Spatial Dimensions of Stated Preference Valuation in Environmental and Resource Economics: Methods, Trends and Challenges," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(2), pages 215-242, February.
    22. Julie Le Gallo, 2000. "Spatial econometrics (1, Spatial autocorrelation) [Econométrie spatiale (1, Autocorrélation spatiale)]," Working Papers hal-01527290, HAL.
    23. Buettner, Thiess & Poehnlein, Maximilian, 2024. "Tax competition effects of a minimum tax rate: Empirical evidence from German municipalities," Journal of Public Economics, Elsevier, vol. 236(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jregsc:v:54:y:2014:i:4:p:664-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0022-4146 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.