IDEAS home Printed from https://ideas.repec.org/p/nzb/nzbdps/2006-01.html
   My bibliography  Save this paper

Phillips curve forecasting in a small open economy

Author

Abstract

Stock and Watson (1999) show that the Phillips curve is a good forecasting tool in the United States. We assess whether this good performance extends to two small open economies, with relatively large tradable sectors. Using data for Australia and New Zealand, we find that the open economy Phillips curve performs poorly relative to a univariate autoregressive benchmark. However, its performance improves markedly when sectoral Phillips curves are used which model the tradable and non-tradable sectors separately. Combining forecasts from these sectoral models is much better than obtaining forecasts from a Phillips curve estimated on aggregate data. We also find that a diffusion index that combines a large number of indicators of real economic activity provides better forecasts of non-tradable inflation than more conventional measures of real demand, thus supporting Stock and Watson's (1999) findings for the United States.

Suggested Citation

  • Troy Matheson, 2006. "Phillips curve forecasting in a small open economy," Reserve Bank of New Zealand Discussion Paper Series DP2006/01, Reserve Bank of New Zealand.
  • Handle: RePEc:nzb:nzbdps:2006/01
    as

    Download full text from publisher

    File URL: http://www.rbnz.govt.nz/-/media/ReserveBank/Files/Publications/Discussion%20papers/2006/dp06-01.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    2. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    3. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    4. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    5. Charles Engel, 1999. "Accounting for U.S. Real Exchange Rate Changes," Journal of Political Economy, University of Chicago Press, vol. 107(3), pages 507-538, June.
    6. Canova, Fabio, 1998. "Detrending and business cycle facts," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 475-512, May.
    7. Matheson, Troy, 2010. "Assessing the fit of small open economy DSGEs," Journal of Macroeconomics, Elsevier, vol. 32(3), pages 906-920, September.
    8. Michael B. Devereux & Philip R. Lane & Juanyi Xu, 2006. "Exchange Rates and Monetary Policy in Emerging Market Economies," Economic Journal, Royal Economic Society, vol. 116(511), pages 478-506, April.
    9. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    10. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    11. De Gregorio, Jose & Giovannini, Alberto & Wolf, Holger C., 1994. "International evidence on tradables and nontradables inflation," European Economic Review, Elsevier, vol. 38(6), pages 1225-1244, June.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    14. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    15. Tim Robinson & Andrew Stone & Marileze van Zyl, 2003. "The Real-time Forecasting Performance of Phillips Curves," RBA Research Discussion Papers rdp2003-12, Reserve Bank of Australia.
    16. Svensson, Lars E. O., 2000. "Open-economy inflation targeting," Journal of International Economics, Elsevier, vol. 50(1), pages 155-183, February.
    17. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    18. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    19. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    20. Laxton, Douglas & Pesenti, Paolo, 2003. "Monetary rules for small, open, emerging economies," Journal of Monetary Economics, Elsevier, vol. 50(5), pages 1109-1146, July.
    21. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    22. Alfred V. Guender, 2006. "Stabilising Properties of Discretionary Monetary Policies in a Small Open Economy," Economic Journal, Royal Economic Society, vol. 116(508), pages 309-326, January.
    23. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    24. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    25. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    26. Linde, Jesper, 2005. "Estimating New-Keynesian Phillips curves: A full information maximum likelihood approach," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1135-1149, September.
    27. Batini, Nicoletta & Jackson, Brian & Nickell, Stephen, 2005. "An open-economy new Keynesian Phillips curve for the U.K," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1061-1071, September.
    28. Paul Conway & Ben Hunt, 1997. "Estimating potential output: a semi-structural approach," Reserve Bank of New Zealand Discussion Paper Series G97/9, Reserve Bank of New Zealand.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicoleta CIURILA & Bogdan MURARASU, 2008. "Inflation Dynamics in Romania – a New Keynesian Perspective," Annals of University of Craiova - Economic Sciences Series, University of Craiova, Faculty of Economics and Business Administration, vol. 1(36), pages 155-160, May.
    2. Croonenbroeck, Carsten & Stadtmann, Georg, 2012. "Evaluating Phillips curve based inflation forecasts in Europe: A note," Discussion Papers 329, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    3. Bazán-Palomino, Walter & Rodríguez, Gabriel, 2018. "The New Keynesian framework for a small open economy with structural breaks: Empirical evidence from Peru," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 13-25.
    4. Juselius, Mikael, 2008. "Testing the New Keynesian Model on U.S. and Euro Area Data," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-26.
    5. Matheson, Troy, 2010. "Assessing the fit of small open economy DSGEs," Journal of Macroeconomics, Elsevier, vol. 32(3), pages 906-920, September.
    6. Ernest Gnan & Maria Teresa Valderrama, 2006. "Globalization, Inflation and Monetary Policy," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 37-54.
    7. Ramos-Francia, Manuel & Torres, Alberto, 2008. "Inflation dynamics in Mexico: A characterization using the New Phillips curve," The North American Journal of Economics and Finance, Elsevier, vol. 19(3), pages 274-289, December.
    8. Claudio E. V. Borio & Andrew Filardo, 2007. "Globalisation and inflation: New cross-country evidence on the global determinants of domestic inflation," BIS Working Papers 227, Bank for International Settlements.
    9. Man Wang & Kun Chen & Qin Luo & Chao Cheng, 2018. "Multi-Step Inflation Prediction with Functional Coefficient Autoregressive Model," Sustainability, MDPI, vol. 10(6), pages 1-16, May.
    10. Mr. Sergi Lanau & Adrian Robles & Mr. Frederik G Toscani, 2018. "Explaining Inflation in Colombia: A Disaggregated Phillips Curve Approach," IMF Working Papers 2018/106, International Monetary Fund.
    11. Ashley Dunstan & Troy Matheson & Hamish Pepper, 2009. "Analysing wage and price dynamics in New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/06, Reserve Bank of New Zealand.
    12. Alfred Guender & Yu Xie, 2007. "Is there an exchange rate channel in the forward-looking Phillips curve? A theoretical and empirical investigation," New Zealand Economic Papers, Taylor & Francis Journals, vol. 41(1), pages 5-28.
    13. Stefán Thórarinsson, 2022. "Analysing inflation dynamics in Iceland using a Bayesian structural vector autoregression model," Economics wp88, Department of Economics, Central bank of Iceland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    2. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    3. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    4. Pablo Pincheira & Andrés Gatty, 2016. "Forecasting Chilean inflation with international factors," Empirical Economics, Springer, vol. 51(3), pages 981-1010, November.
    5. Hilde Bjørnland & Leif Brubakk & Anne Jore, 2008. "Forecasting inflation with an uncertain output gap," Empirical Economics, Springer, vol. 35(3), pages 413-436, November.
    6. Pincheira, Pablo & Selaive, Jorge & Nolazco, Jose Luis, 2016. "The Evasive Predictive Ability of Core Inflation," MPRA Paper 68704, University Library of Munich, Germany.
    7. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    8. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    9. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    10. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    11. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
    12. Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014. "A predictability test for a small number of nested models," Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
    13. Thorvardur Tjörvi Ólafsson, 2006. "The New Keynesian Phillips Curve: In Search of Improvements and Adaptation to the Open Economy," Economics wp31_tjorvi, Department of Economics, Central bank of Iceland.
    14. Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
    15. Rossi, Barbara & Sekhposyan, Tatevik, 2011. "Understanding models' forecasting performance," Journal of Econometrics, Elsevier, vol. 164(1), pages 158-172, September.
    16. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    17. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    18. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    19. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    20. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nzb:nzbdps:2006/01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Reserve Bank of New Zealand Knowledge Centre (email available below). General contact details of provider: https://edirc.repec.org/data/rbngvnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.