Some Properties of Flows at Freeway Bottlenecks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, Lei & Levinson, David, 2010.
"Ramp metering and freeway bottleneck capacity,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
- Lei Zhang & David Levinson, 2003. "Ramp metering and freeway bottleneck capacity," Working Papers 201002, University of Minnesota: Nexus Research Group.
- Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shengnan Li & Hu Yang & Minglun Li & Jianjun Dai & Pu Wang, 2023. "A Highway On-Ramp Control Approach Integrating Percolation Bottleneck Analysis and Vehicle Source Identification," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
- Zhang, Lei & Levinson, David, 2010.
"Ramp metering and freeway bottleneck capacity,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
- Lei Zhang & David Levinson, 2003. "Ramp metering and freeway bottleneck capacity," Working Papers 201002, University of Minnesota: Nexus Research Group.
- Anderson, Michael L. & Davis, Lucas W., 2020. "An empirical test of hypercongestion in highway bottlenecks," Journal of Public Economics, Elsevier, vol. 187(C).
- Lapardhaja, Servet & Jalota, Devansh & Doig, Jean & Almubarak, Abdullah & Cassidy, Michael, 2021. "Testing alternative treatments for underused carpool lanes on narrow freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 139-149.
- Michael L. Anderson & Lucas W. Davis, 2018. "Two Empirical Tests of Hypercongestion," NBER Working Papers 24469, National Bureau of Economic Research, Inc.
- Banks, James, 2006. "New Approach to Bottleneck Capacity Analysis: Second Interim Report, Work Accomplished During Fiscal Year 2004-2005," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4089969k, Institute of Transportation Studies, UC Berkeley.
- Hall, Jonathan D., 2018.
"Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways,"
Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
- Jonathan D. Hall, 2015. "Pareto Improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Working Papers tecipa-548, University of Toronto, Department of Economics.
- Banks, James H., 2006. "New Approach to Bottleneck Capacity Analysis: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6hm1g7s6, Institute of Transportation Studies, UC Berkeley.
- Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
- Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
- Chow, Andy H.F. & Lu, Xiao-Yun & Qiu, Tony Z., 2009. "Empirical Analysis of Traffic Breakdown Probability Distribution with Respect to Speed and Occupancy," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt35j7r3t5, Institute of Transportation Studies, UC Berkeley.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shengnan Li & Hu Yang & Minglun Li & Jianjun Dai & Pu Wang, 2023. "A Highway On-Ramp Control Approach Integrating Percolation Bottleneck Analysis and Vehicle Source Identification," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
- Banks, James H., 2003. "Average time gaps in congested freeway flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 539-554, July.
- Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
- Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
- Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
- Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
- Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Zhang, Lei & Levinson, David, 2010.
"Ramp metering and freeway bottleneck capacity,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
- Lei Zhang & David Levinson, 2003. "Ramp metering and freeway bottleneck capacity," Working Papers 201002, University of Minnesota: Nexus Research Group.
- Cassidy, Michael J. & Ahn, Soyoung, 2004. "Driver Turn-Taking Behavior in Congested Freeway Merges," University of California Transportation Center, Working Papers qt06j9k7h2, University of California Transportation Center.
- Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
- Tanzina Afrin & Nita Yodo, 2020. "A Survey of Road Traffic Congestion Measures towards a Sustainable and Resilient Transportation System," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
- Arnott, Richard, 2013.
"A bathtub model of downtown traffic congestion,"
Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
- Arnott, Richard, 2015. "A Bathtub Model of Downtown Traffic Congestion," University of California Transportation Center, Working Papers qt24h06883, University of California Transportation Center.
- MartĂnez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
- Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
- Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.
- Kontorinaki, Maria & Karafyllis, Iasson & Papageorgiou, Markos, 2019. "Local and coordinated ramp metering within the unifying framework of an adaptive control scheme," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 89-113.
- Coifman, Benjamin & Kim, Seoungbum, 2011. "Extended bottlenecks, the fundamental relationship, and capacity drop on freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 980-991, November.
- Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
- Chen, Chao, 2003. "Freeway Performance Measurement System (PeMS)," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j93p90t, Institute of Transportation Studies, UC Berkeley.
- Hall, Jonathan D., 2018.
"Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways,"
Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
- Jonathan D. Hall, 2015. "Pareto Improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Working Papers tecipa-548, University of Toronto, Department of Economics.
More about this item
Keywords
freeway capacity; active bottleneck; queue discharge flow; pre-queue transition flow;All these keywords.
JEL classification:
- R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
- R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:bottleneckproperties. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.