IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt4089969k.html
   My bibliography  Save this paper

New Approach to Bottleneck Capacity Analysis: Second Interim Report, Work Accomplished During Fiscal Year 2004-2005

Author

Listed:
  • Banks, James

Abstract

This report documents work accomplished during Fiscal Year 2005-2005 as a part of a research project entitled “New Approach to Bottleneck Capacity.” This project is developing an alternative to the traditional Highway Capacity Manual approach to capacity analysis in which capacity flow [either pre-queue flow (PQF) or queue discharge flow (QDF)] is related to a set of intervening variables, including the average time gaps in the critical lane (i. e., that with the highest flow rate) and the distribution of flow across the lanes, represented by the critical lane flow ratio (i. e., the flow in the critical lane divided by the average flow per lane). These intervening variables, in turn, are to be related to the geometric characteristics of bottleneck sites, their vehicle populations, and their driver populations. Work to date has included the collection and analysis of data, analysis of traffic data to document flow characteristics at individual study sites, and an analysis of the relationships among the various traffic flow characteristics, including relationships among the intervening variables and between the intervening variables and capacity flows. Major findings to date are that (a) there are significant differences in the mean values of the flow characteristics during different episodes of PQF and QDF at individual sites;(b) means of flow characteristics are significantly different among the sites (with the exception of critical lane average time gaps in PQF); (c) flow variances also differ significantly among the sites;(d) QDF appears to vary by time of dayat some sites; (e) critical lane average time gaps and critical lane flow ratios are not correlated with one another in either PQF or QDF; (f) there is a significant negative correlation between the time gaps and the flow per lane; and (g) there is a very strong negative correlation between flow in the critical lane and critical lane average time gaps; when plotted, this relationship is virtually linear. On the basis of these findings, models relating flow per lane (for PQF and QDF) to critical lane flow ratios and critical lane average time gaps are proposed for use in the next stage of the research, which will focus on relating the flow ratios and time gaps to the geometric, vehicle-population, and driver population characteristics of the study sites.

Suggested Citation

  • Banks, James, 2006. "New Approach to Bottleneck Capacity Analysis: Second Interim Report, Work Accomplished During Fiscal Year 2004-2005," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4089969k, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt4089969k
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/4089969k.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part II: Merges and the onset of congestion," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 159-169, February.
    2. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    3. Banks, James H., 2003. "Average time gaps in congested freeway flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 539-554, July.
    4. Lei Zhang & David Levinson, 2004. "Some Properties of Flows at Freeway Bottlenecks," Working Papers 200403, University of Minnesota: Nexus Research Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banks, James H., 2006. "New Approach to Bottleneck Capacity Analysis: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6hm1g7s6, Institute of Transportation Studies, UC Berkeley.
    2. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    3. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    4. Treiber, Martin & Kesting, Arne, 2011. "Evidence of convective instability in congested traffic flow: A systematic empirical and theoretical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1362-1377.
    5. Li, Jia & Chen, Di & Zhang, Michael, 2022. "Equilibrium modeling of mixed autonomy traffic flow based on game theory," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 110-127.
    6. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    7. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    8. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    9. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    10. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    11. Jin, Wen-Long & Yan, Qinglong, 2019. "A formulation of unifiable multi-commodity kinematic wave model with relative speed ratios," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 236-253.
    12. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    13. Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    14. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.
    15. Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.
    16. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    17. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    18. Qian, Wei-Liang & F. Siqueira, Adriano & F. Machado, Romuel & Lin, Kai & Grant, Ted W., 2017. "Dynamical capacity drop in a nonlinear stochastic traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 328-339.
    19. Fan, Wenbo & Jiang, Xinguo & Erdogan, Sevgi & Sun, Yanshuo, 2016. "Modeling and evaluating FAIR highway performance and policy options," Transport Policy, Elsevier, vol. 48(C), pages 156-168.
    20. Gong, Siyuan & Du, Lili, 2016. "Optimal location of advance warning for mandatory lane change near a two-lane highway off-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 1-30.

    More about this item

    Keywords

    Engineering; Bottleneck Capacity;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt4089969k. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.