IDEAS home Printed from https://ideas.repec.org/p/mtl/montde/2005-11.html
   My bibliography  Save this paper

Von Neumann-Morgenstern Stable Sets in Matching Problems

Author

Listed:
  • EHLERS, Lars

Abstract

The following properties of the core of a one well-known: (i) the core is non-empty; (ii) the core is a lattice; and (iii) the set of unmatched agents is identical for any two matchings belonging to the core. The literature on two-sided matching focuses almost exclusively on the core and studies extensively its properties. Our main result is the following characterization of (von Neumann-Morgenstern) stable sets in one-to-one matching problem only if it is a maximal set satisfying the following properties : (a) the core is a subset of the set; (b) the set is a lattice; (c) the set of unmatched agents is identical for any two matchings belonging to the set. Furthermore, a set is a stable set if it is the unique maximal set satisfying properties (a), (b) and (c). We also show that our main result does not extend from one-to-one matching problems to many-to-one matching problems.

Suggested Citation

  • EHLERS, Lars, 2005. "Von Neumann-Morgenstern Stable Sets in Matching Problems," Cahiers de recherche 2005-11, Universite de Montreal, Departement de sciences economiques.
  • Handle: RePEc:mtl:montde:2005-11
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1866/540
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Klijn, Flip & Masso, Jordi, 2003. "Weak stability and a bargaining set for the marriage model," Games and Economic Behavior, Elsevier, vol. 42(1), pages 91-100, January.
    2. Alkan, Ahmet & Gale, David, 2003. "Stable schedule matching under revealed preference," Journal of Economic Theory, Elsevier, vol. 112(2), pages 289-306, October.
    3. Ahmet Alkan, 2001. "original papers : On preferences over subsets and the lattice structure of stable matchings," Review of Economic Design, Springer;Society for Economic Design, vol. 6(1), pages 99-111.
    4. Charles Blair, 1988. "The Lattice Structure of the Set of Stable Matchings with Multiple Partners," Mathematics of Operations Research, INFORMS, vol. 13(4), pages 619-628, November.
    5. Biswas, Amit K. & Parthasarathy, T. & Ravindran, G., 2001. "Stability and Largeness of the Core," Games and Economic Behavior, Elsevier, vol. 34(2), pages 227-237, February.
    6. , & ,, 2006. "A theory of stability in many-to-many matching markets," Theoretical Economics, Econometric Society, vol. 1(2), pages 233-273, June.
    7. Echenique, Federico & Oviedo, Jorge, 2004. "Core many-to-one matchings by fixed-point methods," Journal of Economic Theory, Elsevier, vol. 115(2), pages 358-376, April.
    8. Einy, Ezra & Holzman, Ron & Monderer, Dov & Shitovitz, Benyamin, 1996. "Core and Stable Sets of Large Games Arising in Economics," Journal of Economic Theory, Elsevier, vol. 68(1), pages 200-211, January.
    9. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 187-200.
    10. Ehlers, Lars, 2007. "Von Neumann-Morgenstern stable sets in matching problems," Journal of Economic Theory, Elsevier, vol. 134(1), pages 537-547, May.
    11. Einy, Ezra & Shitovitz, Benyamin, 2003. "Symmetric von Neumann-Morgenstern stable sets in pure exchange economies," Games and Economic Behavior, Elsevier, vol. 43(1), pages 28-43, April.
    12. Demange, Gabrielle, 1987. "Nonmanipulable Cores," Econometrica, Econometric Society, vol. 55(5), pages 1057-1074, September.
    13. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    14. Sasaki, Hiroo & Toda, Manabu, 1992. "Consistency and characterization of the core of two-sided matching problems," Journal of Economic Theory, Elsevier, vol. 56(1), pages 218-227, February.
    15. Einy, Ezra & Holzman, Ron & Monderer, Dov & Shitovitz, Benyamin, 1997. "Core Equivalence Theorems for Infinite Convex Games," Journal of Economic Theory, Elsevier, vol. 76(1), pages 1-12, September.
    16. Peleg, Bezalel, 1986. "A proof that the core of an ordinal convex game is a von Neumann-Morgenstern solution," Mathematical Social Sciences, Elsevier, vol. 11(1), pages 83-87, February.
    17. Martinez, Ruth & Masso, Jordi & Neme, Alejandro & Oviedo, Jorge, 2000. "Single Agents and the Set of Many-to-One Stable Matchings," Journal of Economic Theory, Elsevier, vol. 91(1), pages 91-105, March.
    18. Zhou Lin, 1994. "A New Bargaining Set of an N-Person Game and Endogenous Coalition Formation," Games and Economic Behavior, Elsevier, vol. 6(3), pages 512-526, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. , & ,, 2006. "A theory of stability in many-to-many matching markets," Theoretical Economics, Econometric Society, vol. 1(2), pages 233-273, June.
    2. Toshiyuki Hirai, 2008. "von Neumann–Morgenstern stable sets of income tax rates in public good economies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(1), pages 81-98, October.
    3. Klijn, Flip & Yazıcı, Ayşe, 2014. "A many-to-many ‘rural hospital theorem’," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 63-73.
    4. Hirai, Toshiyuki & Watanabe, Naoki, 2018. "von Neumann–Morgenstern stable sets of a patent licensing game: The existence proof," Mathematical Social Sciences, Elsevier, vol. 94(C), pages 1-12.
    5. Federico Echenique & Sumit Goel & SangMok Lee, 2022. "Stable allocations in discrete exchange economies," Papers 2202.04706, arXiv.org, revised Feb 2024.
    6. David Cantala, 2011. "Agreement toward stability in matching markets," Review of Economic Design, Springer;Society for Economic Design, vol. 15(4), pages 293-316, December.
    7. Hatfield, John William & Kojima, Fuhito, 2010. "Substitutes and stability for matching with contracts," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1704-1723, September.
    8. Klaus, Bettina & Klijn, Flip, 2005. "Stable matchings and preferences of couples," Journal of Economic Theory, Elsevier, vol. 121(1), pages 75-106, March.
    9. Juárez, Noelia & Neme, Pablo & Oviedo, Jorge, 2022. "Lattice structure of the random stable set in many-to-many matching markets," Games and Economic Behavior, Elsevier, vol. 132(C), pages 255-273.
    10. Ayşe Yazıcı, 2017. "Probabilistic stable rules and Nash equilibrium in two-sided matching problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 103-124, March.
    11. Paula Jaramillo & Çaǧatay Kayı & Flip Klijn, 2014. "On the exhaustiveness of truncation and dropping strategies in many-to-many matching markets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 793-811, April.
    12. , & , J. & ,, 2011. "Von Neumann-Morgenstern farsightedly stable sets in two-sided matching," Theoretical Economics, Econometric Society, vol. 6(3), September.
    13. Assaf Romm, 2014. "Implications of capacity reduction and entry in many-to-one stable matching," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(4), pages 851-875, December.
    14. Marek Pycia & M Bumin Yenmez, 2023. "Matching with Externalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(2), pages 948-974.
    15. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    16. Hatfield, John William & Kominers, Scott Duke, 2017. "Contract design and stability in many-to-many matching," Games and Economic Behavior, Elsevier, vol. 101(C), pages 78-97.
    17. Atay, Ata & Mauleon, Ana & Vannetelbosch, Vincent, 2021. "A bargaining set for roommate problems," Journal of Mathematical Economics, Elsevier, vol. 94(C).
    18. José Alcalde & Antonio Romero-Medina, 2017. "Fair student placement," Theory and Decision, Springer, vol. 83(2), pages 293-307, August.
    19. John William Hatfield & Paul R. Milgrom, 2005. "Matching with Contracts," American Economic Review, American Economic Association, vol. 95(4), pages 913-935, September.
    20. Qianfeng Tang & Yongchao Zhang, 2021. "Weak stability and Pareto efficiency in school choice," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 533-552, March.

    More about this item

    Keywords

    Matching Problem; Von Neumann-Morgenstern Stable Sets;

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • J41 - Labor and Demographic Economics - - Particular Labor Markets - - - Labor Contracts
    • J44 - Labor and Demographic Economics - - Particular Labor Markets - - - Professional Labor Markets and Occupations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montde:2005-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sharon BREWER (email available below). General contact details of provider: https://edirc.repec.org/data/demtlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.