IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2013-25.html
   My bibliography  Save this paper

Higher-Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes

Author

Listed:
  • D.S. Poskitt
  • Simone D. Grose
  • Gael M. Martin

Abstract

This paper investigates the accuracy of bootstrap-based inference in the case of long memory fractionally integrated processes. The re-sampling method is based on the semi-parametric sieve approach, whereby the dynamics in the process used to produce the bootstrap draws are captured by an autoregressive approximation. Application of the sieve method to data pre-filtered by a semi-parametric estimate of the long memory parameter is also explored. Higher-order improvements yielded by both forms of re-sampling are demonstrated using Edgeworth expansions for a broad class of statistics that includes first- and second-order moments, the discrete Fourier transform and regression coefficients. The methods are then applied to the problem of estimating the sampling distributions of the sample mean and of selected sample autocorrelation coefficients, in experimental settings. In the case of the sample mean, the pre-filtered version of the bootstrap is shown to avoid the distinct underestimation of the sampling variance of the mean which the raw sieve method demonstrates in finite samples, higher order accuracy of the latter notwithstanding. Pre-filtering also produces gains in terms of the accuracy with which the sampling distributions of the sample autocorrelations are reproduced, most notably in the part of the parameter space in which asymptotic normality does not obtain. Most importantly, the sieve bootstrap is shown to reproduce the (empirically infeasible) Edgeworth expansion of the sampling distribution of the autocorrelation coefficients, in the part of the parameter space in which the expansion is valid.

Suggested Citation

  • D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2013. "Higher-Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 25/13, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2013-25
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp25-13.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. S. D. Grose & D. S. Poskitt, 2006. "The Finite-Sample Properties of Autoregressive Approximations of Fractionally-Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 15/06, Monash University, Department of Econometrics and Business Statistics.
    3. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    4. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    5. Faÿ, Gilles & Moulines, Eric & Soulier, Philippe, 2004. "Edgeworth expansions for linear statistics of possibly long-range-dependent linear processes," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 275-288, February.
    6. D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
    7. Lieberman, Offer & Rousseau, Judith & Zucker, David M., 2001. "Valid Edgeworth Expansion For The Sample Autocorrelation Function Under Long Range Dependence," Econometric Theory, Cambridge University Press, vol. 17(1), pages 257-275, February.
    8. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    9. Lieberman, Offer & Phillips, Peter C.B., 2004. "Expansions For The Distribution Of The Maximum Likelihood Estimator Of The Fractional Difference Parameter," Econometric Theory, Cambridge University Press, vol. 20(3), pages 464-484, June.
    10. Smith, Murray D., 1989. "On the expectation of a ratio of quadratic forms in normal variables," Journal of Multivariate Analysis, Elsevier, vol. 31(2), pages 244-257, November.
    11. Edwin Choi & Peter Hall, 2000. "Bootstrap confidence regions computed from autoregressions of arbitrary order," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 461-477.
    12. Faÿ, Gilles, 2010. "Moment bounds for non-linear functionals of the periodogram," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 983-1009, June.
    13. Offer Lieberman & Peter C. B. Phillips, 2005. "Expansions for approximate maximum likelihood estimators of the fractional difference parameter," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 367-379, December.
    14. repec:adr:anecst:y:1986:i:4:p:05 is not listed on IDEAS
    15. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    16. Jan R. Magnus, 1986. "The Exact Moments of a Ratio of Quadratic Forms in Normal Variables," Annals of Economics and Statistics, GENES, issue 4, pages 95-109.
    17. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
    2. Masoud M. Nasari & Mohamedou Ould-Haye, 2022. "Confidence intervals with higher accuracy for short and long-memory linear processes," Statistical Papers, Springer, vol. 63(4), pages 1187-1220, August.
    3. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    4. Arteche González, Jesús María, 2020. "Frequency Domain Local Bootstrap in long memory time series," BILTOKI info:eu-repo/grantAgreeme, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    5. Arteche, Josu, 2024. "Bootstrapping long memory time series: Application in low frequency estimators," Econometrics and Statistics, Elsevier, vol. 29(C), pages 1-15.
    6. La Vecchia, Davide & Ronchetti, Elvezio, 2019. "Saddlepoint approximations for short and long memory time series: A frequency domain approach," Journal of Econometrics, Elsevier, vol. 213(2), pages 578-592.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    2. Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
    3. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    4. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    5. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    6. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    7. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    8. S. D. Grose & D. S. Poskitt, 2006. "The Finite-Sample Properties of Autoregressive Approximations of Fractionally-Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 15/06, Monash University, Department of Econometrics and Business Statistics.
    9. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    10. Martin, Gael M. & Nadarajah, K. & Poskitt, D.S., 2020. "Issues in the estimation of mis-specified models of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 215(2), pages 559-573.
    11. Cassola, Nuno & Morana, Claudio, 2010. "Comovements in volatility in the euro money market," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 525-539, April.
    12. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    13. Psaradakis, Zacharias & Vávra, Marián, 2017. "A distance test of normality for a wide class of stationary processes," Econometrics and Statistics, Elsevier, vol. 2(C), pages 50-60.
    14. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Modified information criteria and selection of long memory time series models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 116-131.
    15. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    16. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    17. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    18. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    19. D. S. Poskitt, 2005. "Autoregressive Approximation in Nonstandard Situations: The Non-Invertible and Fractionally Integrated Cases," Monash Econometrics and Business Statistics Working Papers 16/05, Monash University, Department of Econometrics and Business Statistics.
    20. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.

    More about this item

    Keywords

    Long memory; ARFIMA; sieve bootstrap; bootstrap-based inference; Edgeworth expansion; sampling distribution.;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2013-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.