The Finite-Sample Properties of Autoregressive Approximations of Fractionally-Integrated and Non-Invertible Processes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
- Christopher F. Baum & John Barkoulas, 2006.
"Long-memory forecasting of US monetary indices,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
- John Barkoulas & Christopher F. Baum, 2003. "Long-Memory Forecasting of U.S. Monetary Indices," Boston College Working Papers in Economics 558, Boston College Department of Economics.
- Baillie, Richard T. & Chung, Sang-Kuck, 2002. "Modeling and forecasting from trend-stationary long memory models with applications to climatology," International Journal of Forecasting, Elsevier, vol. 18(2), pages 215-226.
- Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012.
"Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap,"
Monash Econometrics and Business Statistics Working Papers
8/12, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2014. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 10/14, Monash University, Department of Econometrics and Business Statistics.
- D. S. Poskitt, 2008.
"Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
- D. S. Poskitt, 2006. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 12/06, Monash University, Department of Econometrics and Business Statistics.
- Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015.
"Higher-order improvements of the sieve bootstrap for fractionally integrated processes,"
Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
- D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2012. "Higher Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 9/12, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2013. "Higher-Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 25/13, Monash University, Department of Econometrics and Business Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015.
"Bias Correction of Persistence Measures in Fractionally Integrated Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
- Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2013. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Monash Econometrics and Business Statistics Working Papers 29/13, Monash University, Department of Econometrics and Business Statistics.
- Simone D. Grose & Gael M. Martin & D.S. Poskitt, 2014. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Monash Econometrics and Business Statistics Working Papers 19/14, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012.
"Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap,"
Monash Econometrics and Business Statistics Working Papers
8/12, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2014. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 10/14, Monash University, Department of Econometrics and Business Statistics.
- Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015.
"Higher-order improvements of the sieve bootstrap for fractionally integrated processes,"
Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
- D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2012. "Higher Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 9/12, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2013. "Higher-Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 25/13, Monash University, Department of Econometrics and Business Statistics.
- Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
- Ana Pérez & Esther Ruiz, 2002.
"Modelos de memoria larga para series económicas y financieras,"
Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
- Pérez, Ana, 2001. "Modelos de memoria larga para series económicas y financieras," DES - Documentos de Trabajo. EstadÃstica y EconometrÃa. DS ds010101, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
- Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Modified information criteria and selection of long memory time series models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 116-131.
- D. S. Poskitt, 2005. "Autoregressive Approximation in Nonstandard Situations: The Non-Invertible and Fractionally Integrated Cases," Monash Econometrics and Business Statistics Working Papers 16/05, Monash University, Department of Econometrics and Business Statistics.
- Rea, William & Oxley, Les & Reale, Marco & Brown, Jennifer, 2013. "Not all estimators are born equal: The empirical properties of some estimators of long memory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 29-42.
- Richard T. Baillie & George Kapetanios & Fotis Papailias, 2017.
"Inference for impulse response coefficients from multivariate fractionally integrated processes,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 60-84, March.
- Richard T. Baillie & George Kapetanios & Fotis Papailias, 2015. "Inference for Impulse Response Coefficients From Multivariate Fractionally Integrated Processes," Working Paper series 15-46, Rimini Centre for Economic Analysis.
- Baillie, Richard T. & Kongcharoen, Chaleampong & Kapetanios, George, 2012. "Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures," International Journal of Forecasting, Elsevier, vol. 28(1), pages 46-53.
- N. H. Chan & A. E. Brockwell, 2006. "Long-memory dynamic Tobit models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 351-367.
- Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022.
"Globalization, long memory, and real interest rate convergence: a historical perspective,"
Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
- Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Globalization, Long Memory, and Real Interest Rate Convergence: A Historical Perspective," Working Papers 2020106, University of Pretoria, Department of Economics.
- Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013.
"SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence,"
Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.
- Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2012. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," AMSE Working Papers 1214, Aix-Marseille School of Economics, France.
- Mohamed Chikhi & Anne Peguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Post-Print hal-01499630, HAL.
- Mohamed Chikhi & Anne Peguin-Feissolle & Michel Terraza, 2012. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Working Papers halshs-00793203, HAL.
- Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
- Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
- Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
- Paramsothy Silvapulle, 2001.
"A Score Test For Seasonal Fractional Integration And Cointegration,"
Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 85-104.
- Param Silvapulle, 1995. "A Score Test for Seasonal Fractional Integration and Cointegration," Econometrics 9506005, University Library of Munich, Germany, revised 16 Jun 1995.
- Silvapulle, P., 1995. "A Score Test for Seasonal Fractional Integration and Cointegration," Working Papers 95-08, University of Iowa, Department of Economics.
- Laura Mayoral, 2007.
"Minimum distance estimation of stationary and non-stationary ARFIMA processes,"
Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
- Laura Mayoral, 2006. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Economics Working Papers 959, Department of Economics and Business, Universitat Pompeu Fabra.
- Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010.
"Long memory versus structural breaks in modeling and forecasting realized volatility,"
Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
- Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
More about this item
Keywords
Autoregression; autoregressive approximation; fractional process;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2006-07-21 (Econometrics)
- NEP-ETS-2006-07-21 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2006-15. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.