Confidence intervals with higher accuracy for short and long-memory linear processes
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-021-01265-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas & Koul, Hira L., 2014. "Asymptotic Normality For Weighted Sums Of Linear Processes," Econometric Theory, Cambridge University Press, vol. 30(1), pages 252-284, February.
- Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2009. "Two estimators of the long-run variance: Beyond short memory," Journal of Econometrics, Elsevier, vol. 150(1), pages 56-70, May.
- D. S. Poskitt, 2008.
"Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
- D. S. Poskitt, 2006. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 12/06, Monash University, Department of Econometrics and Business Statistics.
- Nasari, Masoud M. & Ould-Haye, Mohamedou, 2021. "A consistent estimator for skewness of partial sums of dependent data," Statistics & Probability Letters, Elsevier, vol. 171(C).
- Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015.
"Higher-order improvements of the sieve bootstrap for fractionally integrated processes,"
Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
- D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2012. "Higher Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 9/12, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2013. "Higher-Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 25/13, Monash University, Department of Econometrics and Business Statistics.
- Andrews, Donald W K, 1991.
"Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation,"
Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
- Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877, Cowles Foundation for Research in Economics, Yale University.
- Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
- John Haslett & Adrian E. Raftery, 1989. "Space‐Time Modelling with Long‐Memory Dependence: Assessing Ireland's Wind Power Resource," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(1), pages 1-21, March.
- Robinson, P.M., 2005. "Robust Covariance Matrix Estimation: Hac Estimates With Long Memory/Antipersistence Correction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 171-180, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019.
"Change-in-mean tests in long-memory time series: a review of recent developments,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
- Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "Change-in-Mean Tests in Long-memory Time Series: A Review of Recent Developments," Hannover Economic Papers (HEP) dp-598, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
- McElroy, Tucker & Politis, Dimitris N., 2013.
"Distribution theory for the studentized mean for long, short, and negative memory time series,"
Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
- McElroy, Tucker S & Politis, D N, 2011. "Distribution Theory for the Studentized Mean for Long, Short, and Negative Memory Time Series," University of California at San Diego, Economics Working Paper Series qt0dr145dt, Department of Economics, UC San Diego.
- McElroy, Tucker S. & Politis, Dimitris N., 2012. "Distribution Theory for the Studentized Mean for Long, Short, and Negative Memory Time Series," University of California at San Diego, Economics Working Paper Series qt35c7r55c, Department of Economics, UC San Diego.
- Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016.
"Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting,"
Hannover Economic Papers (HEP)
dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Robinson Kruse & Christian Leschinski & Michael Will, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," CREATES Research Papers 2016-17, Department of Economics and Business Economics, Aarhus University.
- Jannik Kreye & Philipp Sibbertsen, 2024. "Testing for a Forecast Accuracy Breakdown under Long Memory," Papers 2409.07087, arXiv.org.
- Zhihao Xu & Clifford M. Hurvich, 2021. "A Unified Frequency Domain Cross-Validatory Approach to HAC Standard Error Estimation," Papers 2108.06093, arXiv.org, revised Jun 2023.
- Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
- Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2018.
"A simple test on structural change in long-memory time series,"
Economics Letters, Elsevier, vol. 163(C), pages 90-94.
- Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "A Simple Test on Structural Change in Long-Memory Time Series," Hannover Economic Papers (HEP) dp-592, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Manabu Asai & Michael McAleer, 2017.
"A fractionally integrated Wishart stochastic volatility model,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Documentos de Trabajo del ICAE 2013-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," KIER Working Papers 848, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
- Gupta, Abhimanyu, 2018.
"Autoregressive spatial spectral estimates,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
- Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 23825, University of Essex, Department of Economics.
- Zacharias Psaradakis & Marián Vávra, 2017.
"Normality Tests for Dependent Data: Large-Sample and Bootstrap Approaches,"
Birkbeck Working Papers in Economics and Finance
1706, Birkbeck, Department of Economics, Mathematics & Statistics.
- Zacharias Psaradakis & Marian Vavra, 2017. "Normality Tests for Dependent Data," Working and Discussion Papers WP 12/2017, Research Department, National Bank of Slovakia.
- Daniel Borup & Bent Jesper Christensen & Yunus Emre Ergemen, 2019. "Assessing predictive accuracy in panel data models with long-range dependence," CREATES Research Papers 2019-04, Department of Economics and Business Economics, Aarhus University.
- D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012.
"Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap,"
Monash Econometrics and Business Statistics Working Papers
8/12, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2014. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 10/14, Monash University, Department of Econometrics and Business Statistics.
- Marián Vávra, 2020.
"Assessing distributional properties of forecast errors for fan-chart modelling,"
Empirical Economics, Springer, vol. 59(6), pages 2841-2858, December.
- Marian Vavra, 2018. "Assessing Distributional Properties of Forecast Errors," Working and Discussion Papers WP 3/2018, Research Department, National Bank of Slovakia.
- Margherita Gerolimetto & Stefano Magrini, 2020. "Testing for boundary conditions in case of fractionally integrated processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 357-371, June.
- Fu, Hui & Chen, Wenting & He, Xin-Jiang, 2018. "On a class of estimation and test for long memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 906-920.
- Qunyong Wang & Na Wu, 2012. "Long-run covariance and its applications in cointegration regression," Stata Journal, StataCorp LP, vol. 12(3), pages 525-542, September.
- Fu, Hui, 2012. "On a Class of Estimation and Test for Long Memory," MPRA Paper 47978, University Library of Munich, Germany.
- Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015.
"Bias Correction of Persistence Measures in Fractionally Integrated Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
- Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2013. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Monash Econometrics and Business Statistics Working Papers 29/13, Monash University, Department of Econometrics and Business Statistics.
- Simone D. Grose & Gael M. Martin & D.S. Poskitt, 2014. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Monash Econometrics and Business Statistics Working Papers 19/14, Monash University, Department of Econometrics and Business Statistics.
- Paul Doukhan & Ieva Grublytė & Denys Pommeret & Laurence Reboul, 2020. "Comparing the marginal densities of two strictly stationary linear processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1419-1447, December.
More about this item
Keywords
Accuracy of the CLT; Confidence intervals; Limit theorems; Edgeworth expansion; Linear processes; Long memory; Time series analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:4:d:10.1007_s00362-021-01265-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.