IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i4d10.1007_s00362-021-01265-w.html
   My bibliography  Save this article

Confidence intervals with higher accuracy for short and long-memory linear processes

Author

Listed:
  • Masoud M. Nasari

    (School of Mathematics and Statistics
    Canadian Blood Services)

  • Mohamedou Ould-Haye

    (School of Mathematics and Statistics)

Abstract

In this paper an easy to implement method of stochastically weighing short and long-memory linear processes is introduced. The method renders asymptotically exact size confidence intervals for the population mean which are significantly more accurate than their classic counterparts for each fixed sample size n. It is illustrated both theoretically and numerically that the randomization framework of this paper produces randomized (asymptotic) pivotal quantities, for the mean, which admit central limit theorems with smaller magnitudes of error as compared to those of their leading classic counterparts. An Edgeworth expansion result for randomly weighted linear processes whose innovations do not necessarily satisfy the Cramer condition, is established. Numerical illustrations and applications to real world data are also included.

Suggested Citation

  • Masoud M. Nasari & Mohamedou Ould-Haye, 2022. "Confidence intervals with higher accuracy for short and long-memory linear processes," Statistical Papers, Springer, vol. 63(4), pages 1187-1220, August.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:4:d:10.1007_s00362-021-01265-w
    DOI: 10.1007/s00362-021-01265-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-021-01265-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-021-01265-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas & Koul, Hira L., 2014. "Asymptotic Normality For Weighted Sums Of Linear Processes," Econometric Theory, Cambridge University Press, vol. 30(1), pages 252-284, February.
    2. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2009. "Two estimators of the long-run variance: Beyond short memory," Journal of Econometrics, Elsevier, vol. 150(1), pages 56-70, May.
    3. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    4. Nasari, Masoud M. & Ould-Haye, Mohamedou, 2021. "A consistent estimator for skewness of partial sums of dependent data," Statistics & Probability Letters, Elsevier, vol. 171(C).
    5. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    6. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    7. John Haslett & Adrian E. Raftery, 1989. "Space‐Time Modelling with Long‐Memory Dependence: Assessing Ireland's Wind Power Resource," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(1), pages 1-21, March.
    8. Robinson, P.M., 2005. "Robust Covariance Matrix Estimation: Hac Estimates With Long Memory/Antipersistence Correction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 171-180, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    2. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    3. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    4. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Jannik Kreye & Philipp Sibbertsen, 2024. "Testing for a Forecast Accuracy Breakdown under Long Memory," Papers 2409.07087, arXiv.org.
    6. Zhihao Xu & Clifford M. Hurvich, 2021. "A Unified Frequency Domain Cross-Validatory Approach to HAC Standard Error Estimation," Papers 2108.06093, arXiv.org, revised Jun 2023.
    7. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    8. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2018. "A simple test on structural change in long-memory time series," Economics Letters, Elsevier, vol. 163(C), pages 90-94.
    9. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    10. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    11. Zacharias Psaradakis & Marián Vávra, 2017. "Normality Tests for Dependent Data: Large-Sample and Bootstrap Approaches," Birkbeck Working Papers in Economics and Finance 1706, Birkbeck, Department of Economics, Mathematics & Statistics.
    12. Daniel Borup & Bent Jesper Christensen & Yunus Emre Ergemen, 2019. "Assessing predictive accuracy in panel data models with long-range dependence," CREATES Research Papers 2019-04, Department of Economics and Business Economics, Aarhus University.
    13. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    14. Marián Vávra, 2020. "Assessing distributional properties of forecast errors for fan-chart modelling," Empirical Economics, Springer, vol. 59(6), pages 2841-2858, December.
    15. Margherita Gerolimetto & Stefano Magrini, 2020. "Testing for boundary conditions in case of fractionally integrated processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 357-371, June.
    16. Fu, Hui & Chen, Wenting & He, Xin-Jiang, 2018. "On a class of estimation and test for long memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 906-920.
    17. Qunyong Wang & Na Wu, 2012. "Long-run covariance and its applications in cointegration regression," Stata Journal, StataCorp LP, vol. 12(3), pages 525-542, September.
    18. Fu, Hui, 2012. "On a Class of Estimation and Test for Long Memory," MPRA Paper 47978, University Library of Munich, Germany.
    19. Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
    20. Paul Doukhan & Ieva Grublytė & Denys Pommeret & Laurence Reboul, 2020. "Comparing the marginal densities of two strictly stationary linear processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1419-1447, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:4:d:10.1007_s00362-021-01265-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.